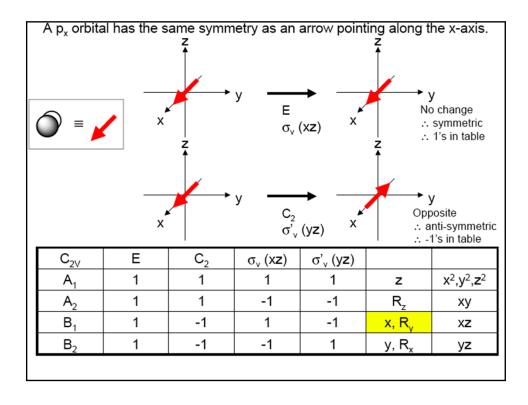
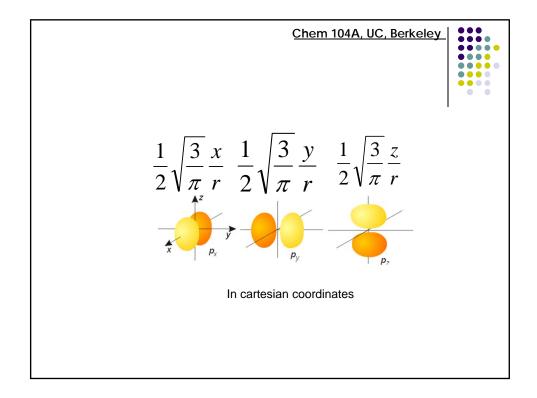
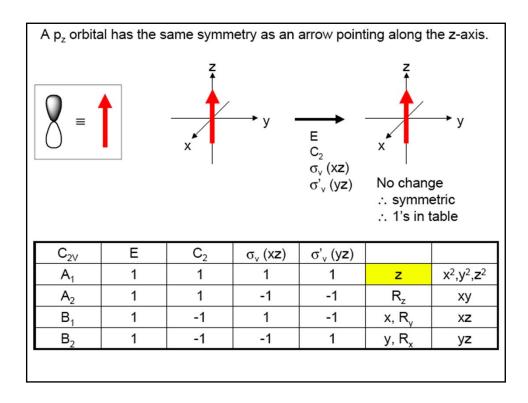

$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$ \begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \left(\begin{array}{c} -1 \\ 0 \\ 0 \end{array}\right) $	$ \begin{array}{ccc} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$				
	C _{2v}	E	C ₂	σν	σv				
	Aı	1	1	1	1	Z	$x^2; y^2; z^2$		
	A ₂	1	1	-1	-1	Rz	ху		
	B 1	1	-1	1	-1	x, R _y	xz		
	B2	1	-1	-1	1	y,R∗	yz		
	Characters of the irreducible representation								

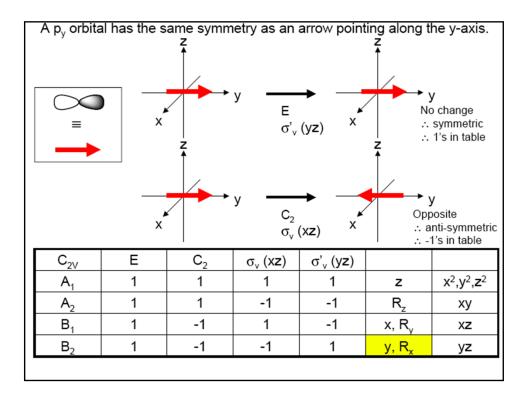
Сзи	Е	2C ₃	3σ,		
A 1	1	1	1	Z	$x^{2} + y^{2}; z^{2}$
A ₂	1	1	-1	R₂	
E	2	-1	0	$(x,y),(R_x,R_y)$	$(x^2 - y^2, xy)$
					(xz, yz)
$\Gamma \begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 $1)($	0	0		```
$ \Gamma_{x,y} $	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \left(\begin{array}{c} \end{array} \right)$	$\frac{\cos 2\pi/3}{\sin 2\pi/3}$	$-\sin 2\pi / \cos 2\pi / 3$	$ \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} $	
Γ_{z}	1		1	1	

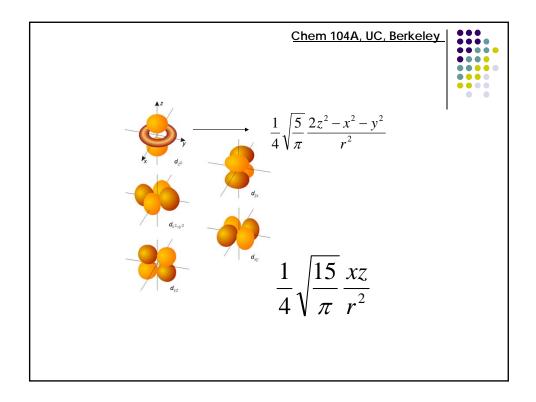
Сзи	Е	2C₃	3σ _ν					
A 1	1	1	1	Z	$x^2 + y^2; z^2$			
A ₂	1	1	-1	Rz				
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ (xz, yz)			
Mulliken symbol $1D \rightarrow A, B$ $2D \rightarrow E$ $3D \rightarrow T$ $\chi(C_n) = 1 \longrightarrow A$ $\chi(C_n) = -1 \longrightarrow B$ Subscript 1,2 : C ₂ or σ_v Subscript g, u: i								

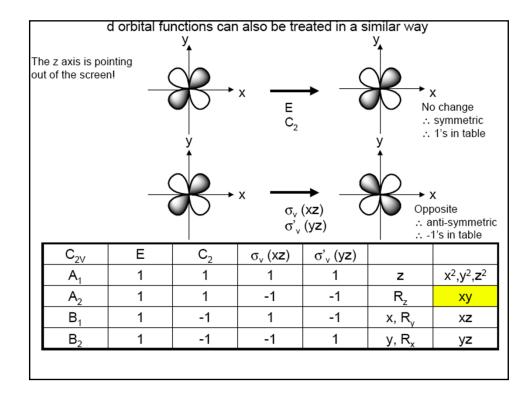

	Character Tables										
		symmetry operation classes									
	a r e a #1	area #2	area #3	area #4							
area #1		rmmetry Labels ("Mulliken Symbols") for i ee rules for assigning these labels accord			1						
area #2	tra be	naracters, the "mathematical essence" of ices of symmetry transformation matrices havior, and -1 = antisymmetrical behavio presentations can have higher integers; lo	s. Roughly, +1 r. Higher dim	l = symmetric ensional	al						
area #3 Translational axes (x,y,z) and rotational axes (R _x , R _y , R _z) grouped according to irreducible representations.											
area #4	area #4 Polynomials, grouped according to irreducible representations. The symmetry of atomic orbitals is equivalent to the symmetry of the corresponding polynomials.										

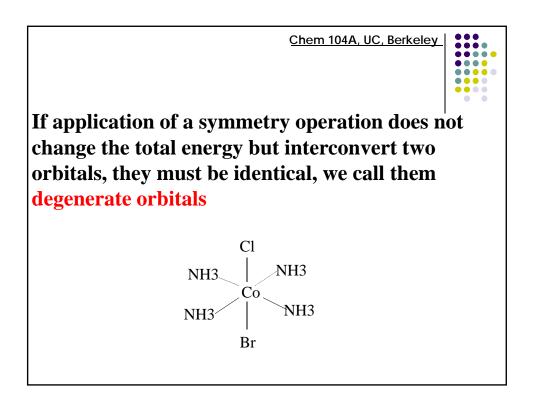

Сзч	Е	2C₃	3σ _ν		
A ₁	1	1	1	Z	$x^2 + y^2; z^2$
A ₂	1	1	-1	Rz	
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ $/ (xz, yz)$
Mulliken symbol	C	Basis: oordinates: R: rotatio px,py,pz	on	bina	he squares, ry products orbitals

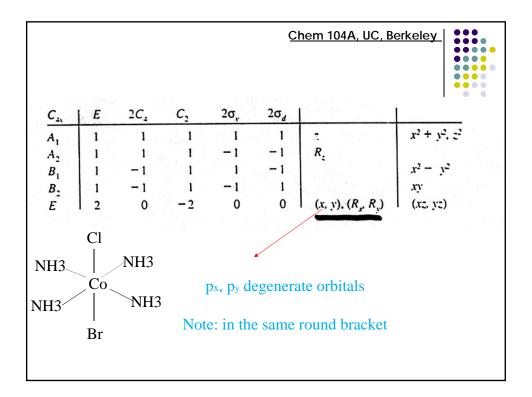

Mulliken Symbol Notation
 All representations described by one basis function (i.e., one dimensional matrices) are given either A or B symbols.
Two dimensional representations are given the symbol E Three-dimensional representations are given the symbol T
2) Representations that are symmetric w.r.t. the principle axis C_n are A Representations that are antisymmetric w.r.t. the principle axis C_n are B
3) Subscripts: 1, when representation is symmetric w.r.t. $\perp C_2$'s or σ_v 's 2, when representation is antisymmetric w.r.t. $\perp C_2$'s or σ_v 's
4) Superscripts: "prime", when representation is symmetric w.r.t. σ_h "double-prime", when representation is antisymmetric w.r.t. σ_h
5) Subscripts: g (gerade), when representation is symmetric w.r.t. inversion, i u (ungerade), when representation is antisymmetric w.r.t. inversion, i
NOTES:
When inversion symmetry is present, (5) supercedes (4) When multiple $\perp C_2$ and σ_v classes are present, it is not readily apparent which classes have precedence for rule (3)

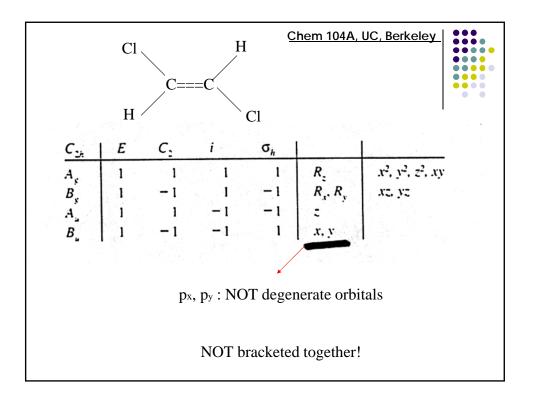

					Che	em 104A, UC, Berkele	<u>y</u>
C _{2h}	E	C ₂	i	$\sigma_{\rm h}$	_	-	
Ag	1	1	1	1	R _z	x ² ; y ² ; z ² ; xy	
B _g	1	-1	1	-1	R _x ;R _y	xz;yz	
A _u	1	1	-1	-1	Z		
B _u	1	-1	-1	1	x;y		




Basis					A, UC, Berl		
-		p _x orbita the irre C ₂					
Aı	1	1	1	1	z	$x^2; y^2; z^2$	
A ₂	1	1	-1	-1	Rz	ху	
Bı	1	-1	1	-1	x, R _y	xz	
B 2	1	-1	-1	1	y,R _x	yz	







	Prop	perties of		_{Chem 104A, UC, B} acter Table	
Сзи	E	2C₃	3σ _ν		
A ₁	1	1	1	Z	$x^2 + y^2; z^2$
A ₂	1	1	-1	Rz	
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ (xz, yz)
				•	

Сзи	E	2C₃	3σ,		
A ₁	1	1	1	Z	$x^2 + y^2; z^2$
A ₂	1	1	-1	Rz	
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ (xz, yz)

Irreducible representation

the sum of the squares of the dimensions of the irreducible representations of a group equals to the order of the group:

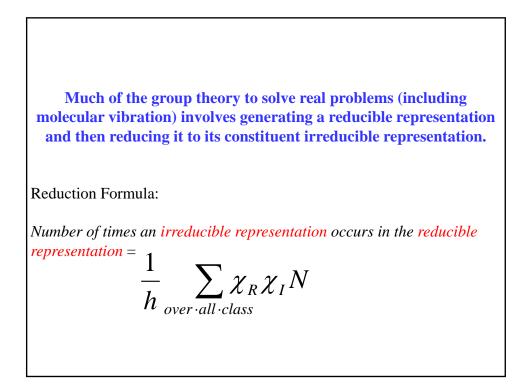
$$h=\Sigma I_i^2$$

$$\sum {l_i}^2 = 1 + 1 + 4 = 6 = h$$

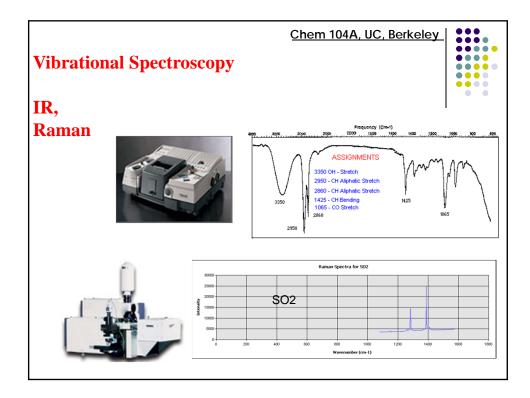
Сзи	E	2C₃	3σ,		
A ₁	1	1	1	Z	$x^2 + y^2; z^2$
A ₂	1	1	-1	Rz	
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$

Irreducible representation

the sum of the squares of the characters multiplied by the number of operations in the class in any irreducible representation equals h.

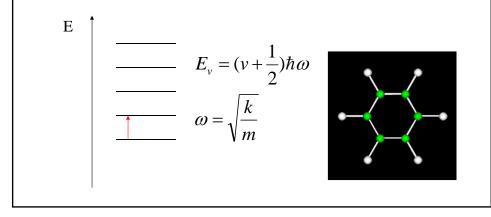

$$\sum_{R} N\chi_{i}(R)^{2} = h \qquad A_{1}:1^{2} + 2(1^{2}) + 3(1^{2}) = 6$$
$$A_{2}:1^{2} + 2(1^{2}) + 3(-1)^{2} = 6$$
$$E:2^{2} + 2(-1)^{2} + 3(0)^{2} = 6$$

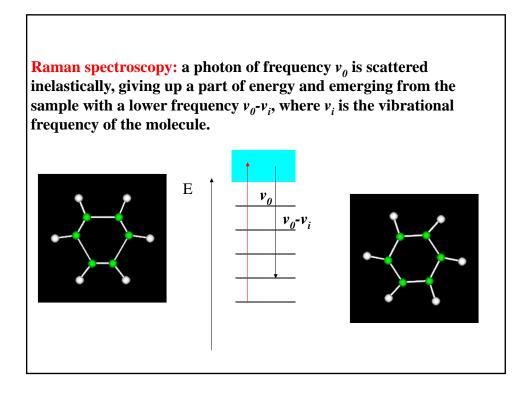
Сзи	E	2C ₃	3σ,										
A ₁	1	1	1	Z	$x^2 + y^2; z^2$								
A ₂	1	1	-1	Rz									
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ (xz, yz)								
	Irreducible representation Irreducible representations are orthogonal to each other.												
$\sum_{R} N\chi_i(R)\chi_j(R) = 0 \text{for } i \neq j.$													
	$A_2 \times A_2$	E:(1)2	+2(1)((-1) + 3(-2)	^{<i>R</i>} $A_2 \times E: (1)2 + 2(1)(-1) + 3(-1)(0) = 0$								

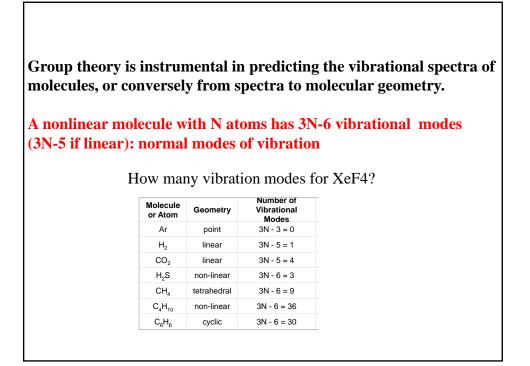

C _{3v}	E	2C₃	3σ _v		
A ₁	1	1	1	Z	$x^2 + y^2; z^2$
A ₂	1	1	-1	Rz	
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ (xz, yz)

Irreducible representation A totally symmetric representation is included in all groups with characters of 1 for all operations.

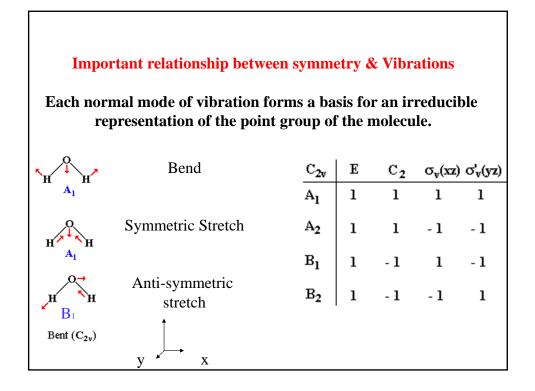
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		G	E	C ₂	σν	σv				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{2v}		•						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		A_1	1	1	1	1	Z	$x^2; y^2; z^2$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		A ₂ 1 1 -1 -1 Rz Xy								
$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ Reducible		B ₁ 1 -1 1 -1 x, R _y xz								
		B2 1 -1 -1 1 y,Rx yz								
$\Gamma = \{3, -1, 1, 1\} = A_1 + B_1 + B_2$ Irreducible										

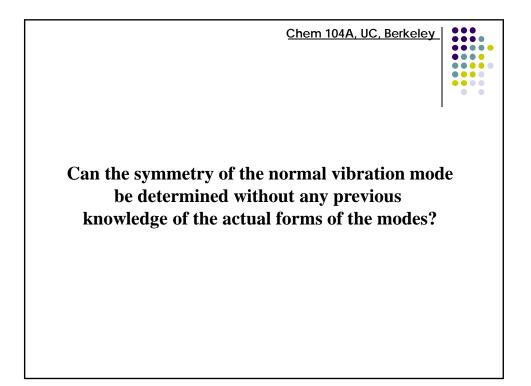



Сзи	E	2C ₃	3σ,						
A ₁	1	1	1	Z	$x^2 + y^2; z^2$				
A ₂	1	1	-1	Rz					
E	2	-1	0	(x,y),(R _x ,R _y)	$(x^2 - y^2, xy)$ (xz, yz)				
Γ	4	1	-2						
	$\# of \dots A_1$	$=\frac{1}{6}[4\bullet 1\bullet 1+$	$-1 \bullet 1 \bullet 2 + (-2)$	$() \bullet 1 \bullet 3] = 0$					
	# of $A_2 = \frac{1}{6} [4 \bullet 1 \bullet 1 + 1 \bullet 1 \bullet 2 + (-2) \bullet (-1) \bullet 3] = 2$								
	# of $E = \frac{1}{6} [4 \bullet 2 \bullet 1 + 1 \bullet (-1) \bullet 2 + (-2) \bullet 0 \bullet 3] = 1$								
				$\Gamma =$	$2A_2 + E$				

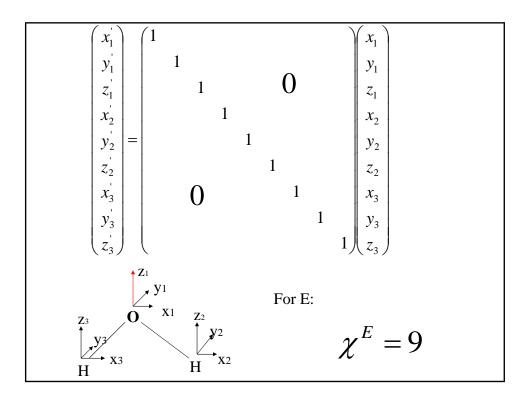


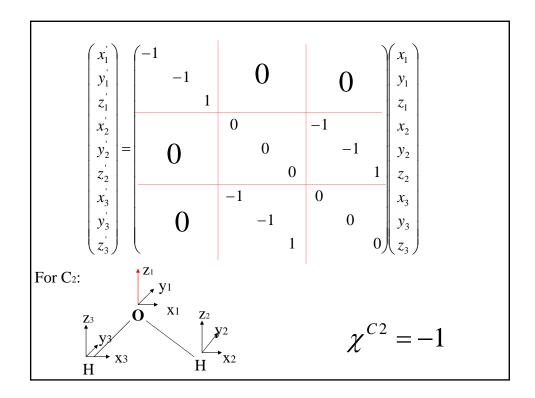
Vibrational Spectroscopy

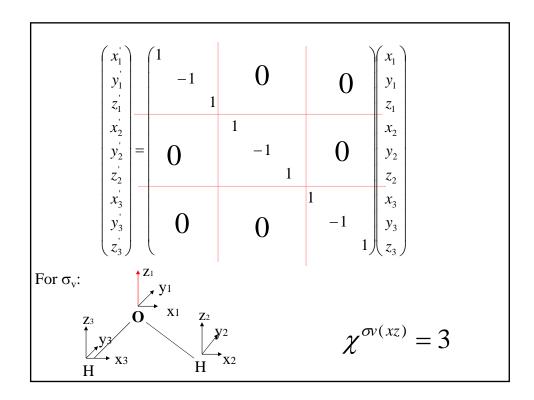

IR: a photon of **IR** radiation of frequency *v* is absorbed and molecules/solids are promoted to higher vibrational states. For this absorption to occur, the energy of the photon must match the energy separation.

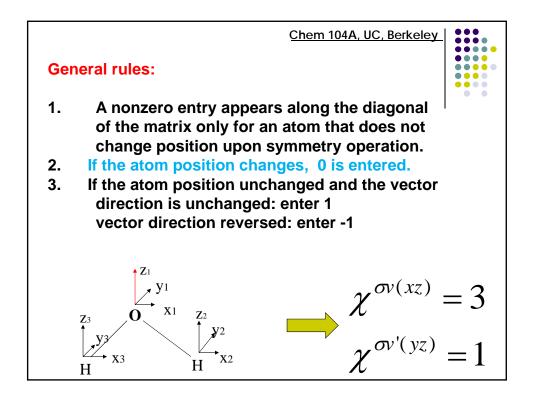



Bas	is				<u>Chem 104</u>	<u>A, UC, Ber</u> l	keley			
e. g.	e. g. in C _{2v} , the p _x orbital transforms as x, and is represented by the irreducible representation Γ_x .									
C	2v	Е	C ₂	σν	σν					
A	1	1	1	1	1	Z	$x^2; y^2; z^2$			
A ₂		1	1	-1	-1	Rz	ху			
E	1	1	-1	1	-1	x, R _y	xz			
В	2	1	-1	-1	1	y,R _x	yz			






Vibrational Spectroscopy


To find out the symmetry of all possible molecular motions, Step 1. use x, y, z coordinates at each atom as a basis to generate a reducible representation of the group.

C _{2v}	E	C ₂	σ	O v'
Гзи	9	-1	3	1

Step 2. Reduce the reducible representation into the irreducible representation for the group. (Use reduction formula)

$$# = \frac{1}{h} \sum_{overallcla ss} \chi_R \chi_I N$$

$$\frac{C_{2v} \mid E \quad C_2 \quad \sigma_v(xz) \sigma_v'(yz) \mid}{A_1 \mid 1 \quad 1 \quad 1 \quad 1 \quad z \quad x^2, y^2, z^2}$$

$$\frac{A_2 \mid 1 \quad 1 \quad -1 \quad -1 \quad R_z \quad xy}{B_1 \mid 1 \quad -1 \quad 1 \quad -1 \quad x, Ry \quad xz}$$

$$\frac{B_2 \mid 1 \quad -1 \quad -1 \quad 1 \quad y, R_x \mid yz}{B_2 \mid 1 \quad -1 \quad -1 \quad 1 \quad y, R_x \mid yz}$$

$$\frac{1}{h} \sum_{overallcla ss} \chi_R \chi_I N$$
#of ... $A_1 = \frac{1}{4} [9 \cdot 1 \cdot 1 + (-1) \cdot 1 \cdot 1 + 3 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 1] = 3$
#of ... $A_2 = \frac{1}{4} [9 \cdot 1 \cdot 1 + (-1) \cdot 1 \cdot 1 + 3 \cdot (-1) \cdot 1 + 1 \cdot (-1) \cdot 1] = 1$
#of ... $B_1 = \frac{1}{4} [9 \cdot 1 \cdot 1 + (-1) \cdot (-1) \cdot 1 + 3 \cdot 1 \cdot 1 + 1 \cdot (-1) \cdot 1] = 3$
#of ... $B_2 = \frac{1}{4} [9 \cdot 1 \cdot 1 + (-1) \cdot (-1) \cdot 1 + 3 \cdot (-1) \cdot 1 + 1 \cdot 1 \cdot 1] = 2$

$$\Gamma_{3N} = 3A_1 + A_2 + 3B_1 + 2B_2$$

$$\Gamma_{vib} = \Gamma_{3N} - \Gamma_{translation} - \Gamma_{rotation}$$

$$\dots = (3A_1 + A_2 + 3B_1 + 2B_2) - (A_1 + B_1 + B_2) - (A_2 + B_1 + B_2)$$

$$\dots = 2A_1 + B_1$$

$$H + A_1$$

$$\frac{C_{2v}}{A_1} = \frac{E - C_2 - \sigma_v(xz) - \sigma_v'(yz)}{A_1 - 1 - 1 - 1}$$

$$\frac{V}{A_1} = \frac{x^2, y^2, z^2}{A_2}$$

$$H + A_1$$

$$B_1$$

$$B_1 = 1 - 1 - 1 - 1$$

$$H + B_1$$

$$B_1$$

$$B_1 = 1 - 1 - 1 - 1$$

$$B_1$$

$$B_1$$

$$B_1 = 1 - 1 - 1 - 1$$

$$B_1$$

$$B_1$$

$$B_1 = 1 - 1 - 1 - 1$$

$$B_1$$

$$B_1$$

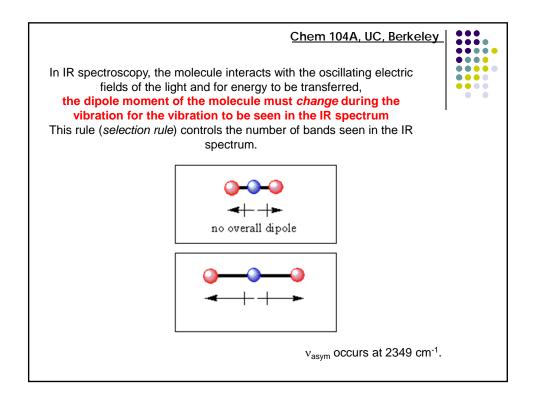
$$B_1$$

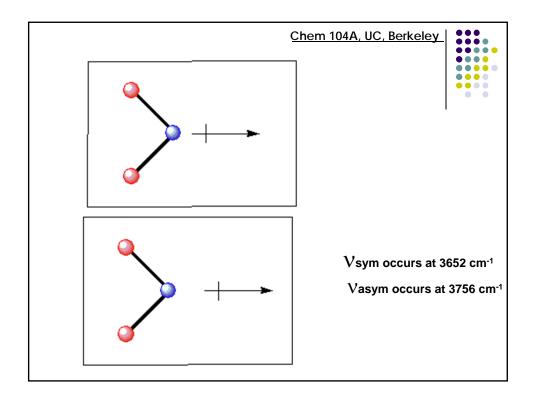
$$B_1$$

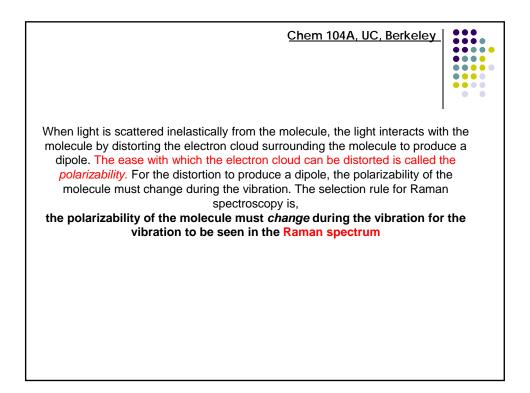
$$B_1$$

$$B_2 = 1 - 1 - 1 - 1$$

$$B_1$$


$$B_$$


Activity rule:


A vibration is IR active if it belongs to the same irreducible representation as x, y, z (i. e. it involves a change in dipole moment).

A vibration is Raman active if it belongs to the same irreducible representation as a binary product (xy, xz, yz, z^2 , x^2 , y^2){component of polarizability tensor).

	$\Gamma_{vib} = 2A_1 + B_1$										
	C _{2v}	Ε	C2	σ _v (xz)	σ' _v (yz)						
	Al	1	1	1	1	Z	x ² , y ² , z ²	IR	Raman		
	A ₂	1	1	-1	- 1	Rz	x ² , y ² , z ² xy xz yz		Raman		
:	B ₁	1	-1	1	- 1	x, Ry	xz	IR	Raman		
	B ₂	1	-1	- 1	1	y, R _x	yz	IR	Raman		

