Carbonyl stretch

Four vectors as Basis

\[\Gamma_{CO,\text{stretch}} = A_{1g} + B_{1g} + E_u \]

IR: \(E_u \)
Raman: \(A_{1g} + B_{1g} \)

Two degenerate mode
One absorption peak

\[
\begin{array}{ccccccccccc}
\Gamma & 4 & 0 & 0 & 2 & 0 & 0 & 0 & 4 & 2 & 0 \\
\hline
D_{4h} & E & 2C_4 & C_2 & 2C_2 & 2C_2' & i & 2S_4 & \sigma_h & 2\sigma_v & 2\sigma_d \\
\end{array}
\]
Exclusion rule:

In centrosymmetric molecules, no IR-active vibration can also be Raman active and vice versa.

Point group containing the inversion operation \(i \) have two sets of irreducible representation, \(g \) and \(u \).

Set \(u \): \(\rightarrow x, y, z \)

Set \(g \): \(\rightarrow xy, xz, yz, z^2, x^2-y^2 \)

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(C_2)</th>
<th>(i)</th>
<th>(\sigma_h)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_x)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(R_z)</td>
<td>(x^2, y^2, z^2, xy)</td>
</tr>
<tr>
<td>(B_x)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>(R_x, R_y)</td>
<td>(xz, yz)</td>
</tr>
<tr>
<td>(A_u)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>(z)</td>
<td></td>
</tr>
<tr>
<td>(B_u)</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>(x, y)</td>
<td></td>
</tr>
</tbody>
</table>

The \(\text{C-Cl} \) stretching modes of \(\text{CCl}_4 \) have \(A_1 + T_2 \) symmetry:

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>4</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_d)</td>
<td>E</td>
<td>8(C_3)</td>
<td>3(C_2)</td>
<td>6(S_4)</td>
<td>6(\sigma_d)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>(E)</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(T_1)</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(T_2)</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Optical activity:

An optical active molecule is one that rotates the plane of the polarized light.

A molecule is optically active only if it cannot be superimposed on its mirror image (chiral or dissymmetric):

1. if it does not contain an S_n axis;
2. if it belongs to a point group C_1, C_n or D_n.

6.1.1 Superimposable and Nonsuperimposable
Superimposable image and mirror image of hammer

Carvone

Chem 104A, UC, Berkeley
Examples with C_1 symmetry: no symmetry elements except the onefold rotation metry is asymmetry.
Symmetry & Group Theory

✔ Predict vibrational spectra
✔ Determine optical activity

Construct bonding based on atomic orbitals

Access reaction pathway