

				<u>Chem 104A, I</u>	JC, Berkeley	
HC1	+	NaOH	>	H ₂ O	+	NaCl
stronger acid		stronger base		Weaker conjugate acid		weaker conjugate base
NH ₄ ⁺ stronger acid	+	OH ⁻ stronger base	>	H ₂ O weaker conjugate acid	+	NH ₃ weaker conjugate base

$$\begin{array}{l} \hline Chem 104A, UC, Berkeley \\ \hline H_nA + H_2O \Leftrightarrow H_{n-1}A^- + H_3O^+ \\ \\ pK_{a1} = -\log \frac{[H_{n-1}A^-][H_3O^+]}{[H_nA]} \\ \\ pK_a < 0 \rightarrow strong \\ pK_a > 0 \rightarrow weak \end{array}$$

Re	lative strength o	Chem 104A, UC, Berkeley	
	Reference acid	Base strength	
	H+,Mg ²⁺ , Sc ³⁺	$F^- > Cl^- > Br^- > I^-$	
	Hg ²⁺	$F^- < Cl^- < Br^- < I^-$	

Hard Bases	Soft B	2606			Bordorlino Basas
H_2O OH F ⁻ AcO ⁻ SO ₄ ²⁻ Cl ⁻	<u>Son B</u> R₂S I	RSH R ₃ P	RS ⁻ (RO)	,P	ArNH ₂ C_5H_5N N ₃ ⁻ Br ⁻
CO ₃ ²⁻ NO ₃ ROH	CN⁻	RCN	co)	NO ₂ -
RO ⁻ R ₂ O NH ₃ RNH ₂	C ₂ H ₄ H ⁻ R ⁻	C ₆ H ₆			
Hard Acids		Soft	Acids		Borderline Aci
H⁺ Li⁺ Na⁺		Cu⁺	Ag⁺	Pd ²⁺	Fe ²⁺ Co ²⁺ Cu ²
K+ Mg ²⁺ Ca ²⁺		Pt ²⁺	Hg ²⁺	BH_3	Zn ²⁺ Sn ²⁺ Sb ²
Al ³⁺ Cr ²⁺ Fe ³⁺ BF ₃ B(OR) ₃ AIMe ₃ AICI ₃ AIH ₃ SO ₃ RCO ⁺ CO ₂ HX (hydrogen-bonding molecules)		GaC CH₂	l ₃ l ₂ carb	Br ₂ enes	Bi ³⁺ BMe₃ SO R₃C⁺ NO⁺ GaH C ₆ H₅⁺

	Chem 104A, UC, Berkeley
Hard Bases (nucleophiles)	Donor atoms have <i>high electronegativity (low HOMO)</i> and <i>low polarizability</i> and are hard to oxidize. They hold their valence electrons tightly.
Soft Bases (nucleophiles)	Donor atoms have <i>low electronegativity (high HOMO)</i> and <i>high polarizability</i> and are easy to oxidize. They hold their valence electrons loosely.
Hard Acids (electrophiles)	Possess small acceptor atoms, have high positive charge and do not contain unshared electron pairs in their valence shells. They have <i>low polarizability</i> and <i>high electronegativity (high LUMO)</i> .
Soft Acids (electrophiles)	Possess large acceptor atoms, have low positive charge and contain unshared pairs of electrons (p or d) in their valence shells. They have <i>high polarizability</i> and <i>low electronegativity (low LUMO)</i>
n.b " <i>The H</i>	SAB principle is not a theory but a statement of experimental facts." Pearson, R.G. Songstad, J.Amer.Chem.Soc., 1967, 89 , 1827

12) 							
Acid	EA	CA	£ _A	Acid	E _A	C.	RA
I. <u>.</u>	0.50	2.00		н-	-5.00	13.03	130.21
H ₀	1.54	0.13	0.20	CH;	19.70	12.61	55.09
SO2	0.56	1.52	0.85	Li ⁺	11.72	1.45	24.21
HF*	2.03	0.30	0.47	5-0	3.78	0.10*	20.79
HCN	1.77	0.50	0.54	NO-*	0.1*	5.85	-5.99
CH,OH	1.25	0.75	0.39	NHT"	4.31	4.31	18.52
H_S"	0.77	1.45	0.56	(CH,).NH;*	3.21	0.70	20.72
HCI"	3.69	0.74	0.55	(CH,)_N-*	1.96	2.36	8.33
C'H'OH	2.27	1.07	0.39	C,H,NH-"	1.51	1.33	21.72
(CH3)3COH	1.36	0.51	0.48	(C.H.),NH-*	2.43	2.05	11.81
нссі,	1.49	0.46	0.45	(CH,),NH-"	2.60	1.33	15.95
сн,со,н»	1.72	0.85	0.63	H,O-	13.27	7.89	20.01
CF,CH,OH	2.07	1.06	0.38	(H.O).H-	11.39	6.03	7.36
с-н,он	1.34	0.69	0.41	(H,O),H	11.21	4.66	2.34
<i>i</i> -C,H,OH	1.14	0.90	0.46	(H.O) H-*	10.68	4.11	3.25
PF"	0.61	0.36	0.87	(CH,),Sn-	7.05	3.15	26.93
B(OCH,)"	0.54	1.22	0.84	(C,H,)NI	11.88	3.49	32.64
AsF [*] ₃	1.48	1.14	0.78	(CH,)NH,"	2.18	2.38	20.68
Fe(CO)	0.10	0.27	1.00	100			
CHF ⁷	1.32	0.91	0.27				
B(C ₂ H ₅) ["] ₃	1.70	2.71	0.61				
Base ^c	Es	C ₈	T ₂	Base"	E3	C,	Ts
ΝН,	2.31	2.04	0.56	C.H.NO	2.29	2.33	0.6
CH,NH.	2.16	3.12	0.59	(CH,),P	1.46	3.44	0.9

Baser	Ea	CB	T _e	Bases	E3	C3	T ₃
NH,	2.31	2.04	0.56	C.H.NO	2.29	2.33	0.67
CH,NH.	2.16	3.12	0.59	(CH,),P	1.46	3.44	0.90
(CH,).NH	1.80	4.21	0.64	(CH,).0	1.68	1.50	0.73
(CH ₃) ₃ N	1.21	5.61	0.75	(CH.).S	0.25	3.75	1.07
C.H.NH.	2.35	3.30	0.54	CH,OH	1.80	0.65	0.70
(C,H,),N	1.32	5.73	0.75	C.H.OH	1.85	1.09	0.70
$HC(C_H),N$	0.80	6.72	0.834	C,H,	0.70	0.45	0.81
C3H3N	1.78	3.54	0.73	H.S"	0.04	1.55	1.13
+-CH ₃ C ₅ H ₁ N	1.74	3.93	0.734	HCN"	1.19	0.10	0.90
3-CH3C3H4N	1.76	3.72	0.744	H.CO'	1.56	0.10	0.75
3-CIC, H ₁ N	1.78	2.81	0.754	CH,CI	2.54	0.10	0.23
CH,CN	1.64	0.71	0.83	CH,CHO*	1.76	0.81	0.74
CH,C(O)CH,	1.74	1.26	0.80	H.O*	2.28	0.10	0.43
CH,COOOCH,	1.63	0.95	0.85	(CH,),COH"	1.92	1.22	0.71
CH;C(0)OC,H;	1.62	0.98	0.89	C.H.C.N"	1.75	0.52	0.85
$HC(O)N(CH_{1})$	2.19	1.31	0.744	F	9.73	4.28	37.40
(C.H.).O	1.80	1.63	0.75	CIT	7.50	3.75	12.30
O(CH,CH,),O	1.36	1.29	0.71	Br ⁻	6.74	3.21	5.86
(CH.).0	1.64	2.18	0.75	1-	5.48	2.97	6.26
(CH_),0	1.70	2.02	0.7:4	CN ⁻	7.23	5.52	9.20
(C.H.).S	0.24	3.92	1.104	0H-*	10.43	4.60	50.73
(CH,).SO	2.40	1.47	0.65	CH,0-*	10.03	4.42	33.77

