

	A Perovsk	ite Structure: ABO3			
	Toleran	Tolerance factor:			
B	$t = \frac{R_A + R_X}{\sqrt{2}(R_B + R_X)}$				
t	Effect	Possible			
		structure			
>1	A cation too large to fit in interstices	Hexagonal perovskite			
0.9-1.0	ideal	Cubic perovskite			
0.71-0.9	A cation too small	Orthorhombic perovskite			
<0.71	A cation same size as B cation	Possible close packed lattice			

Resistivities of Real Materials							
Compound	Resistivity (Ω -cm)	Compound	Resistivity (Ω-cm)				
Ca	3.9×10^{-6}	Si	~ 0.1				
Ti	42×10^{-6}	Ge	~ 0.05				
Mn	185×10^{-6}	ReO ₃	36×10^{-6}				
Zn	5.9×10^{-6}	Fe ₃ O ₄	52×10^{-6}				
Cu	1.7×10^{-6}	TiO ₂	9×10^4				
Ag	1.6×10^{-6}	ZrO ₂	1×10^9				
РЬ	21×10^{-6}	Al ₂ O ₃	1×10^{19}				
Most semiconductors in their pure form are not good conductors, they need to be doped to become conducting.							
Not all so	called "ionic" materi	als like oxid	es are insulators.				

Compound	Structure	Bandgap (eV)	e ⁻ mobility (cm²/V-s)	h* mobility (cm²/V-s)
Si	Diamond	1.11 (I)	1,350	480
Ge	Diamond	0.67 (I)	3,900	1,900
AIP	Sphalerite	2.43 (I)	80	
GaAs	Sphalerite	1.43 (D)	8,500	400
InSb	Sphalerite	0.18 (D)	100,000	1,700
AlAs	Sphalerite	2.16 (I)	1,000	180
GaN	Wurtzite	3.4 (D)	300	

could make it) would be quite insulating.

Common LED materials

•GaAs (E_g=1.43 eV) → Near IR •GaP:N (E_g = 2.25 eV) → Yellow •GaP:Zn,O (E_g = 2.25 eV) → Red •GaN, SiC, ZnO, AlN → Blue, UV

