Diffraction from amorphous solids

- No long-range order
- Only significant order is nearest neighbour spacing
- Diffraction pattern forms diffuse halo
- Typical of colloidal suspensions and globular clusters
- Diffraction is large or small angle depending on the size of the "particle"

Theorem:

For any family of lattice planes separated by distance d, there are reciprocal lattice vectors perpendicular to the planes, the shortest being $2 \pi / d$.

Orientation of plane is determined by a normal vector The miller indices of a lattice plane are the coordination at the reciprocal lattice vector normal to the plane.

Small Angle X-ray Diffraction

Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers
Science 17 October 1997; 278: 449-452

Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores Science, Vol 279, Issue 5350, 548-552, 23 January 1998

Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores Science, Vol 279, Issue 5350, 548-552, 23 January 1998

Chem 253, UC, Berkeley

α-Iron is bodycentered cubic

$$
\%=2 \times \frac{\frac{4}{3} \pi\left(\frac{\sqrt{3} a}{4}\right)^{3}}{a^{3}}=\frac{3 \sqrt{3} \pi}{24}
$$

68\%

Close Packing of Spheres

The most efficient way to fill space with spheres
Is there another way of packing spheres that is more space-efficient?
In 1611 Kepler asserted that there was no way of packing equivalent spheres at a greater density than that of a face-centred cubic arrangement. This is now known as the Kepler Conjecture.
This assertion has long remained without rigorous proof. In 1998 Hales announced a computer-based solution. This proof is contained in over 250 manuscript pages and relies on over 3 gigabytes of computer files

Chem 253, UC, Berkeley

The square pile is formed, as in the annexed figure.

The number of balls in the top layer is 1^{2}, in the next layer 2^{2}, in the next, 3^{2}, and so on. To find the number of balls in a pile of n layers, we have the series,

$$
\begin{array}{llllll}
1 & 4 & 9 & 16 & 25 & 36, ~ \& c .
\end{array}
$$

$$
\text { 1st order of diff., } 3 \quad \begin{array}{llllll}
5 & 7 & 9 & 11 & \& c
\end{array}
$$

$$
\begin{array}{llllllll}
2 \mathrm{~d} & " & " & 2 & 2 & 2 & 2 & \& \mathrm{c} . \\
3 \mathrm{~d} & " & * & 0 & 0 & 0 & \& c .
\end{array}
$$

Hence,

$$
a=1, d_{1}=3, d_{2}=2, d_{2}=0, d_{4}=0, \text { \&o. }
$$

Chem 253, UC, Berkeley
$\mathrm{CN}=12$

C(P Cubic Close-Packing

$$
\%=\frac{4 \times 1.33 \pi r^{3}}{(2 \sqrt{2} r)^{3}}=74.05 \%
$$

For BCC; 68.02\%

HCP Hexagonal Close-Packing

Close Packing of Spheres

Alternatives

$a=b=c, \alpha=\beta=\gamma=90^{\circ}$ $4 r=\sqrt{3} a$

2 atoms in the unit cell:
$(0,0,0)(1 / 2,1 / 2,1 / 2)$
Packing efficiency $\mathrm{R}_{\text {fill }}=\mathrm{V}_{\text {atoms }} N_{\text {cell }}$
With $Z=2, V_{\text {cell }}=a^{3}, 3 a^{2}=(4 r)^{2}$
$\mathrm{R}_{\text {fill }}=0.68$

Close Packing of Spheres

Comparison of Packing Efficiencies

Primitive Cubic $[\alpha-$-Po]
Coordination Number 6
52% Packing Efficiency
$V_{\text {atoms }} V_{\text {cell }}=0.52$, since
$V_{\text {cell }}=a^{3}$ and
$V_{\text {atoms }}=Z 4 / 3 \pi r^{3}$
with $a=2 r$ and $Z=1$

Body-Centered Cubic [W] Coordination Number 8 68\% Packing Efficiency

(increased pressure favors higher packing efficiency)

Chem 253, UC, Berkeley

Close Packing of Spheres

Rare Gas: Ne, He, Ar, Kr, Xe (ccp; fcc)

Metal: $\quad \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}(\mathbf{c} \mathbf{(p)}$
Mg, Zn, Cd, Ti (hcp)
Fe, Cr, Mo (bcc)

Packing of Truncated octahedron

Yaghi, Science 2008

Chem 253, UC, Berkeley
Densest lattice packing of an octahedron
The density of a densest lattice packing of an octahedron was already calculated by Minkowski in 1904. In 1948 Whitworth generalized Minkowski's result to a family of truncated cubes. The density of a densest lattice packing
 is equal to $18 / 19=0.9473 . .$. ,

Hermann Minkowski: Dichteste gitterförmige Lagerung kongruenter Körper, Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. KL (1904) (1904), 311-355

Close Packing Octahedra: Minkowski Lattice

Chem 253, UC, Berkeley

Ionic structures

Can be considered as close packing of large anions with Cation filling in the interstitial sites.

For every anion, there are
1 Octahedral site
2 tetrahedral sites.

Close Packing of Spheres

Different cavity sizes: the octahedral hole

face of unit cell

$$
\frac{1}{2} a=r_{\mathrm{X}} \sqrt{2}
$$

$$
\begin{aligned}
r_{\mathrm{M}}+r_{\mathrm{X}} & =r_{\mathrm{X}} \sqrt{2} \\
r_{\mathrm{M}} / r_{\mathrm{X}} & =\sqrt{2}-1 \\
& =0,414
\end{aligned}
$$

Chem 253, UC, Berkeley

NaCl; ccp, O sites: 100\%

Chem 253, UC, Berkeley

- $\mathrm{CCP} \mathrm{Ca}{ }^{2+}$ with F^{-}in all Tetrahedral holes
-Lattice: fcc
-Motif: Ca^{2+} at (0,0,0); 2F- at $(1 / 4,1 / 4,1 / 4) \&(3 / 4,3 / 4,3 / 4)$
-4 CaF_{2} in unit cell
-Coordination: $\mathrm{Ca}^{2+} 8$ (cubic) : $\mathrm{F}^{-} 4$ (tetrahedral)
- In the related Anti-Fluorite structure Cation and Anion positions are reversed

Fluorite B-cell

Plan view

CaF_{8} Cubes

Close Packing of Spheres

C_{60}

$\mathrm{K}_{3} \mathrm{C}_{60}$

Chem 253, UC, Berkeley

Zinc Blende: ZnS

- CCP S ${ }^{2-}$ with Zn^{2+} in half Tetrahedral holes (only \mathbf{T}^{+}\{or $\left.\mathbf{T}\right\}$ filled)
-Lattice: fcc
$\cdot 4 \mathrm{ZnS}$ in unit cell
-Motif: S at (0,0,0); Zn at $(1 / 4,1 / 4,1 / 4)$
-Coordination: 4:4 (tetrahedral)
-Cation and anion sites are topologically identical

Chem 253, UC, Berkeley

NaCl

-Very common (inc. 'ionics', 'covalents' \& 'intermetallics')
-Most alkali halides (CsCl, CsBr, CsI excepted)

- Most oxides / chalcogenides of alkaline earths
-Many nitrides, carbides, hydrides (e.g. ZrN, TiC, NaH)
CaF_{2} (Fluorite)
-Fluorides of large divalent cations, chlorides of Sr, Ba
-Oxides of large quadrivalent cations ($\mathrm{Zr}, \mathrm{Hf}, \mathrm{Ce}, \mathrm{Th}, \mathrm{U}$)
$\mathrm{Na}_{2} \mathrm{O}$ (Anti-Fluorite)
- Oxides /chalcogenides of alkali metals

ZnS (Zinc Blende/Sphalerite)
-Formed from Polarizing Cations ($\left.\mathrm{Cu}^{+}, \mathrm{Ag}^{+}, \mathrm{Cd}^{2+}, \mathrm{Ga}^{3+} . ..\right)$ and Polarizable Anions ($\mathrm{I}^{-}, \mathrm{S}^{2-}, \mathrm{P}^{3-}, \ldots$);
-e.g. $\mathrm{Cu}(\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}), \mathrm{AgI}, \mathrm{Zn}(\mathrm{S}, \mathrm{Se}, \mathrm{Te}), \mathrm{Ga}(\mathrm{P}, \mathrm{As}), \mathrm{Hg}(\mathrm{S}, \mathrm{Se}, \mathrm{Te})$

Chem 253, UC, Berkeley

HCP Hexagonal Close-Packing
As

Chem 253, UC, Berkeley
-HCP As with Ni in all Octahedral holes
-Lattice: Hexagonal - P
$\cdot a=b, c$
-Motif: 2Ni at (0,0,0) (0,0,1/2) 2As at $(2 / 3,1 / 3,1 / 4) \&(1 / 3,2 / 3,3 / 4)$
-2NiAs in unit cell
-Coordination: Ni 6 (octahedral) : As 6 (trigonal prismatic)

Chem 253, UC, Berkeley
\cdot HCP S ${ }^{2-}$ with $\mathbf{Z n}^{2+}$ in half Tetrahedral holes (only $\mathbf{T +}$ \{or T-\} filled)
-Lattice: Hexagonal - P
$\cdot a=b, c$
\cdot Motif: 2S at $(0,0,0)(2 / 3,1 / 3,1 / 2) ; 2 Z n$ at $(2 / 3,1 / 3,1 / 8) \&(0,0,5 / 8)$
-2ZnS in unit cell
-Coordination: 4:4 (tetrahedral)
PLAN VIEWS

Zinc Blende CCP ABC repeat

Wurtzite HCP AB repeat

Chem 253, UC, Berkeley

POLYHEDRAL REPRESENTATIONS

Zinc Blende

Vertex-linked tetrahedra only, but layers skewed in Wurtzite, \& not in Blende

- HCP I with Cd in Octahedral holes of alternate layers
CdI_{2}

-Lattice: Hexagonal - \mathbf{P}
-Motif: Cd at (0,0,0); 2I at $(2 / 3,1 / 3,1 / 4) \&(1 / 3,2 / 3,3 / 4)$
$\cdot 1 \mathrm{CdI}$ in unit cell
-Coordination: Cd - 6 (Octahedral) : I-3 (base pyramid)

Chem 253, UC, Berkeley

NiAs
$>$ Transition metals with chalcogens, As, Sb, Bi
e.g. $\mathrm{Ti}(\mathrm{S}, \mathrm{Se}, \mathrm{Te}) ; \mathrm{Cr}(\mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{Sb}) ; \mathrm{Ni}(\mathrm{S}, \mathrm{Se}, \mathrm{Te}, \mathrm{As}, \mathrm{Sb}, \mathrm{Sn})$
CdI_{2}
Iodides of moderately polarising cations; bromides and chlorides of strongly polarising cations;
e.g. $\mathrm{PbI}_{2}, \mathrm{FeBr}_{2}, \mathrm{VCl}_{2}$

Hydroxides of many divalent cations
e.g. $(\mathrm{Mg}, \mathrm{Ni})(\mathrm{OH})_{2}$
$>$ Di-chalcogenides of many quadrivalent cations e.g. $\mathrm{TiS}_{2}, \mathrm{ZrSe}_{2}, \mathrm{CoTe}_{2}$

Chem 253, UC, Berkeley

CdCl_{2} (CCP equivalent of Cdl_{2})

> Chlorides of moderately polarising cations e.g. $\mathrm{MgCl}_{2}, \mathrm{MnCl}_{2}$
> Di-sulfides of quadrivalent cations
e.g. $\mathrm{TaS}_{2}, \mathrm{NbS}_{2}$ (CdI2 form as well)
$\mathrm{Cs}_{2} \mathrm{O}$ has the anti-cadmium chloride structure
HCP version of CaF_{2} ?
No structures are known with all Tetrahedral sites
($\mathrm{T}+$ and T -) filled in HCP
i.e. there is no HCP analogue of the Fluorite/Anti-Fluorite Structure

Formula	Type and fraction of sites occupied	CCP	HCP
AB	All octahedral	NaCl Rock Salt	NiAs Nickel Arsenide
	Half tetrahedral (T+ or T-)	$\begin{gathered} \mathrm{ZnS} \\ \text { Zinc Blende } \end{gathered}$	ZnS Wurtzite
AB_{2}	All tetrahedral	$\mathrm{Na}_{2} \mathrm{O}$ Anti-Fluorite CaF_{2} Fluorite	Not known
AB_{3}	All octahedral \& tetrahedral	$\mathrm{Li}_{3} \mathrm{Bi}$	Not known
$A_{2} \mathbf{B}$	Half octahedral (Alternate layers full/empty)	CdCl_{2} (Cadmium Chloride)	CdI 2 (Cadmium Iodide)
	Half octahedral (Ordered framework arrangement)	TiO_{2} (Anatase)	$\begin{gathered} \mathrm{CaCl}_{2} \\ \mathrm{TiO}_{2} \text { (Rutile) } \end{gathered}$
$\mathbf{A}_{3} \mathbf{B}$	Third octahedral Alternate layers $2 / 3$ full/empty	YCl_{3}	BiI_{3}

