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Electronic Structures of Solid
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Resistivities of Real Materials

Compound Resistivity (2-cm) Compound Resistivity (Q2-cm)

Ca 3.9 x10°¢ Si ~ 0.1

Ti 42 x 10 Ge ~ 0.05

Mn 185 x 10°¢ ReO; 36 x 10°¢
Zn 59 x 10° FesO4 52 x 10°¢
Cu 1.7 x 10°¢ TiO, 9 x 10*
Ag 1.6 x 10°¢ ZrO, 1 x 10°
Pb 21 x 10 Al,O; PR 1

Most semiconductors in their pure form are not good
conductors, they need to be doped to become conducting.

Not all so called “ionic” materials like oxides are insulators.
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Properties of Semiconductors

Compound

Structure

Bandgap
(eV)

e mobility
(em?/V-s)

h* mobility
(em?/V-s)

Si

Diamond

1.1 (I)

1,350

480

Ge

Diamond

0.67 (T)

3,900

1,900

AlP

Sphalerite

2.43 (1)

80

GaAs

Sphalerite

1.43 (D)

8,500

400

InSb

Sphalerite

0.18 (D)

100,000

1,700

AlAs

Sphalerite

2.16 (I)

1,000

180

Wurtzite

3.4 (D)

300




Microscopic Conductivity

We can relate the conductivity, o, of a material to microscopic
parameters that describe the motion of the electrons (or other
charge carrying particles such as holes or ions).

o = ne(et/m*)
n = et/m*
c = nep
where

n = the carrier concentration (cm-3)
e = the charge of an electron = 1.602 x 10° C
1 = the relaxation time (s) {the time between collisions}
m* = the effective mass of the electron (kg)
p = the electron mobility (cm?/V-s)

Chem 253, UC, Berkeley @

Carrier Mobility

Momentum gained

during the mean free flight Momentum lost in a collision

eEr=m'y,
Drift velocity
eEr
Vy=——
m*

Mo bl | itV: the ratio of the drift velocity over the applied electric field

_Vd . er

A= E T

cm?2V-1lg-1




Metals, Semiconductors & ;nsulafors

'Ill Conduction
| Band

—E

Valence
Band

DOS DOS DOS

Metal Semimetal Semiconductor

/Insulator

In a metal the Fermi level cuts through a band to produce a partially filled
band. In a semiconductor/insulator there is an energy gap between the filled
bands and the empty bands. The distinction between a semiconductor and an

insulator is artificial, but as the gap becomes large the material usually
becomes a poor conductor of electricity. A semimetal results when the band
gap qoes to zero.

Simple metals
Electrons are considered as “electron gas” (Drude model), i.e. the
application of an electric field accelerates them in the field direction.
Basic assumptions
no interaction between electrons; Independent Electrons
constant potential background, no periodic potential of the lattice;
electrons in a box have only kinetic energy, i.e. E = %2 mv?

Schrodinger equation Hy = Ey

E: eigenvalue of 1 h = h/(2x); h: Planck's constant

m: electron mass

V2: nabla? = §%/ox? + 92/oy? + §%/0Z3

V: potential energy  [here: V =0]

y: wavefunction,
contains information of movement of
the electron (e7) and its position

E: energy

H: Hamilton operator
fI = -R2/(2m) V2 + V

Solutions for y? Free Electron Approximation




Simple metals: Quantum Theory
Boundary conditions

The electron is confined to the solid|(a box of length L):
’W(O) =0and w(L)=0 ‘

Hy = Ey = -h?/(2m) d2y/dx2 + V
with V =0:
0 = h2/(8r2m) d?y/dx? + Evy
0 = d2y/dx? + 8n2m/h2 Ey

We define for simplification

which gives:

d2y/dx? + k2y =0

Thus, vy is a function that is proportional to its second derivative:

v oc d2y/dx?
Possible solution: v = exp(-ikx), or, if real:
y = sin(kx) | => dy/dx = kcos(kx) => d?y/dx? = -k?sin(kx)

General solution includes a constant A: v = Asin(kx)

Simple metals: Quantum Theory
Are the boundary conditions [yw(0) = 0 and (L) = 0] fulfilled?

v = sin(kx) E

N e L N A=2/3L
w(0) = sin(k0) = 0

w(L) = sin(kL) is O/if KL = nx

What are k and E?
With the definition k? = 8x2mE/h?, and kL = nn:
k2 = n2n2/L2 = 8n2mE/h?

hZ

Nz
=>{E = n2h2/(8mL2) E, Zﬂ(T)z k _ 27 _ nz
We also know E =% mvZand p =mv, /1 |_

and considering the particle-wave dualism:
de Broglie: p = hv=h/A =>p/h =1/A
=> k2 = 8n2mE/h? = 8n2m/h2 Y2 mv2 = 4n2/h? p? = 472/)2

k=2n/L | wavevector v = sin(kx) = sin(2n/A x)




Simple metals

Allowed electron energies in a 1D box
, For each allowed energy state
= 2 electrons
’ In a typical metal (L ¥1cm <> 108 unit cells)
AE between individual levels is very small,
i.e. energies are quasi-continuous.

1 2 3 (3 L (] 7 8 hz niz-
—— ()

E, =
2m L

From 1D to 3D:
. nax . Ny . naz
w(r) = Asin sin sin
L L L

X y z

n,z
L

y

EK) =§—m[(“ﬁ—”)2 +C0y 4 ()
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Periodic Boundary Condition

L: periodicity, lattice constant

V() = ey (1) w(X)=y(x+L)
Solution: traveling plane wave ﬁ

v, = Aexp(ik-X)  where:| k-L=2m

72k

E(k) =
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3D Periodic Boundary Condition
w. = Aexp(ik -T)
Normalization:
1= jwn*wndr = Azjexp(—iR-F) exp(ik -r)dr = AV

V: unit cell volume
w. =V Y2 exp(ik -r)
k

2
A

de Broglie wavelength
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Energy Eigenvalue:

G
E(k) = —— =1 (k2 + k2 + k2
(k) o Zm(x y +K)

Moment Operator: — W, = Aexp(iE-F)

e}

ho
I or
" h

B (r) =" () = iku(r)
1 or | ke

Momentum Eigenvalue:

K




With periodic boundary conditions:

Ky 2Ly,

T kL, _ Alkyby _ Jik,L, _
® . e =€ =e =1
- . . . _27mx

k =
" 2D k space: 27 27 L
“_ Areaper k point:
perkp Lx Ly kZZanZ

B i 3D k space: 27 27 2% _ 87’
R int: -
: Area per k point: |_X Ly |_Z \V

A region of k space of volume €3 will contain: 93 =Q_V3allowec
(SL) 8z

k values.
\Y
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Reciprocal Lattice

Reciprocal lattice is always one of 14 Bravais Lattice.

-, bxc
=2r———
a-(bxc)
b* =2 °X3
a-(bxc)

= axb

£

p—"
a-(bxc)
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Vv
k space density of level: —
8

Non-interacting electrons: Pauli exclusion principle
Each wave vector k = two electronic level (spin up/down)

Fermi wave vector: k
F

Volume enclosed by the Fermi surface:
4

— k.’

3
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3
# of allowed states within: 47 k.’ vV _ Ke v

3 87% 6r?

k.’

37°

# of electrons N:

N = V

Electronic density: n=

10
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Free & independent electron ground state:

Fermi wave vector k. =(3z°n)"?
Enclosed Fermi sphere

Fermi Surface

Fermi Momentum P =Tk
Fermi energy £ - h°kZ
Fo2m

Fermi velocity
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Estimation based on conduction electron density:

V 1 4 5 32

7T, 3
N n 3 Ke

13
k = 97z 74) _ 1.92 adius of sphere where volume
F I I equals to the volume per
conduction electron

1k
E, - o _ 50.1ev

- (rs /ao)2
. 2-3, for many metal

Fermi enerqy for metallic elements: 1.5 -15eV
Fermi temperature: E- 58.2

"k (n/ay)

x10* K
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Ag, silver

Al aluminum
Au, gold

Cr, chromium
Mo, molybdenum
Ni, nickel

Pd, palladium

Pt, platinum

Ti, titanium

W, tungsten

Element Work function, ¢, (volt)

ISR SETAR T AT S SR
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Metal
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Density of States
The number of orbitals/states per unit energy range
dN
D(E)=——
dE
°k? B 37N,
E = = ()
m 2m V
vV 2
N — . 7Z2E)3/2
3z°  h
D(E _dN V. 2mig,
( )_ - 2( 2)
dE 27° &

12



Chem 253, UC, Berkeley @

Quantum Confinement and Dimensionality

1E+21 4
9E+20 A /-
» BE*20 4 » /
3 7E+20 4 o
S
& 6E+20 - |~
‘s ]
© 5E+20 A -
%. 4E+20 A
g 3E+20 A Bulk (3D)
2E+20 A Quiantum YWell (2D)
Quantum Wire (1D)
1E+20 4
Quantum Dot (0D)
0
0 10 20 30 40 S50 60 70 80 90 100 110 120
Energy (meV)
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Fermi-Dirac distribution:

1

f(E) =

exp[(E —E,)/k,T]+1

Energy distribution of electrons

- T = 0K
+—
~
0K <T, «<T,

E

Eg

13



Fermi-Dirac Function

The Fermi-Dirac function gives the fraction of allowed states, f(E), at
an energy level E, that are populated at a given temperature.

f(E) = 1/[1 + exp{(E-EF)/KT)]

where the Fermi Energy, E, is defined as the energy where f(E) = 1/2.
That is to say one half of the available states are occupied. T is the
Ter?E¢)zra'rc.re (in K) and k is the Boltzman constant (k = 8.62 x 103

eV

As an example consider f(E) for T = 300 K and a state 0.1 eV above E;:

f(E) = 1/[1 + exp{(0.1 eV)/((300K)(8.62 x 10 eV/K)}]
f(E)=0.02=2%

Consider a band gap of 1 eV.
f(l1eV)=16x10"

See that for even a moderate band gap (Silicon has a band gap of 1.1
eV) the intrinsic concentration of electrons that can be thermally
excited to move about the crystal is tiny. Thus pure Silicon (if you
could make it) would be quite insulating.

Fermi Dirac Function
Metals and Semiconductors
e —\ f(E) as determined
’ o eXperimentally for
| ' i Ru metal (note the

-\
Im; energy scale)

-

nnnn

Val;not Gap Conduction
ban band
f(E) for a . ;
semiconductor e P
- .,
i e
Er
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Crystal Momentum

To better understand the meaning of k, consider an electron at
the outer edge of the Brillouin zone, where k = n/a. The phase of
the electronic wavefunction changes sign every unit cell (similar to
a p-orbital changing phase at its nodal plane)

sl et el le
A=2a — a=A2
k=n/a - a=n/k
Combining these two relationships gives:
A2 = n/k
k =2rn/A A=2n/k

The wavelength of the wavefunction is inversely
proportional to k.

Crystal Momentum

Now consider the DeBroglie relationship (wave-particle duality of
matter)

A= h/p

p = h/A

p = hk/2r
where.,

* p is the momentum of the wavepacket,
* his Planck's constant, 6.626 x 10-34 J-s

The momentum of an electron is directly proportional to k.

k is a measure of the "crystal” momentum of an electron in the

yy wavefunction.

15
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Nearly Free Electron Model

Adding small perturbation by the periodic potential of the ionic cores

Kk
E(k)=—2>
(k)=

Repulsive Force

A AR NI

Attractive Force
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Periodic Boundary Condition

V() =ep (1) w(X)=y(x+L)
Solution: traveling plane wave ﬁ

v, = Aexp(ik-X)  where: k-L=2m

K
E(k) =——
(k)=

Dispersion Curve

16
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3D Periodic Boundary Condition

w. = Aexp(ik -T)
Normalization:

1= jwn*wndr = Azjexp(—iR-F) exp(ik - r)dr = A%V

V: unit cell volume

w, =V Y2exp(ik-r)

2
A

de Broglie wavelength

K
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V ~ -e2/R between negatively charged

Potential electrons, positive cores
Energy
\‘ f’ \ "/
[ [
L -
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Periodic Potentials and Bloch's Theorem

Repulsive Force

=@ T

Attractive Force —
V. (r)=V(r+R)
hl

{__V: + \/'Li|¢ “Eo R Lattice vector

2m

Bloch’s theorem: the eigenstates of the Hamiltonian above can be chosen to have the
form of a plane wave times a function with the periodicity of the Bravais Lattice.

eik-r
Bloch Wavefunction: ¢(r) — —U(r)

W

u(r)=u(r+ ﬁ) periodic part of Bloch function
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Bragg reflection of electron waves in crystal
is the cause of the energy gap.

Momentum-Energy Relation

]

|
=N\ d First Bragg reflection:
g Forbidden Gap: i Z
. a

—ma Momentum (k) T,
Other gap: Nz
A +

N / Ca
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Metals, Semiconductors & ;nsulators

N 'i Conduction
\ | Band

—EF

Valence
Band

DOS DOS DOS

Energy
m
Energy

Metal Semimetal Semiconductor

/Insulator

In a metal the Fermi level cuts through a band to produce a partially filled
band. In a semiconductor/insulator there is an energy gap between the filled
bands and the empty bands. The distinction between a semiconductor and an

insulator is artificial, but as the gap becomes large the material usually
becomes a poor conductor of electricity. A semimetal results when the band

gap goes to zero.
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Reciprocal Lattice

_)
%
n
%
R - - - -
R=na+n,b+n,c
- - = .
iRe(k =k Laue Condition
gt =1

- Reciprocal lattice vector

-iK-R ] ) )
e =1  ForallRin the Bravais Lattice
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For 1D Lattice: 272.
Reciprocal lattice vector: K

K
‘%kl

1 T
Diffraction Condition: K = iE K=+"—n

a

Can be extended to 3D
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Bragg reflection of electron waves
in crystal is the cause of the energy gap.
Momentum-Energy Relation

=N\ ] First Bragg reflection: .
g Forbidden Gap/| i il
a
First Brillouin Zone
_ma  Momentum (k) ma
N Other gap: + Nz

N / Ca

20



Examples for Brillouin zones !
. M
Xz
i B A X
»
L]
2 1st Brillouin Zone
2-D, general
Examples for Brillouin zones
kz
L
oM
ro
1
| o
o . N e | kx
ky‘/l'?/" : =
!
Y R e
=i 0-T/¢

2-D, general

cubic primitive

Wigner-Seitz cell
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T
The wavefunction at +— are not traveling wave of free electrons:

a
exp(£ikx) = exp(+i % X)

Instead: equal parts of the waves traveling to the left and right

A wave travels neither to the left nor to the right is a standing wave.

— —
«—
«—
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Two different standing waves:

w(+) = exp(i = x) +exp(=i = x) = 2cos = x
a a a
(=) = exp(i = x) —exp(=i = x) = 2sin Z x
a a a
2
< |y

Probability density:

Y- Y - )

22
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I 12
/\/\/\/\/\ Pile electron between the

~core ions—>higher energy

-
-

3
trave

VoW VT

Pile electron on the
e core ions—>lower energy

Momentum-Energy Relation

NN 4

Forbidden Gap;

Energy (E)

—

_,da Momentum (k) ﬂa
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\ /
“iP%

o <

Extended zone scheme reduced zone scheme
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