

## Fermi Surface

For free electrons, the constant energy surfaces are circular.

$$E(k) = \frac{\hbar^2 k_x^2}{2m}$$





For a monovalent element, the volume of the Fermi surface is half that of the Brillouin zone:



$$\frac{a^2}{2} = \pi r^2$$

$$r = 0.4a$$

With periodic boundary conditions:



$$e^{ik_xL_x} = e^{ik_yL_y} = e^{ik_zL_z} = 1$$

 $k_{x} = \frac{2\pi n_{x}}{L_{x}}$   $\frac{2\pi}{L_{x}} \frac{2\pi}{L_{y}}$   $k_{y} = \frac{2\pi n_{y}}{L_{y}}$   $k_{z} = \frac{2\pi n_{z}}{L_{z}}$ 



2D k space: Area per k point:

3D k space: 
$$\frac{2\pi}{L_x} \frac{2\pi}{L_y} \frac{2\pi}{L_z} = \frac{8\pi^3}{V}$$
Area per k point: 
$$\frac{2\pi}{L_x} \frac{2\pi}{L_y} \frac{2\pi}{L_z} = \frac{8\pi^3}{V}$$

A region of k space of volume  $\Omega$  will contain:  $\frac{\Omega}{(\frac{8\pi^3}{V})} = \frac{\Omega V}{8\pi^3}$  allowed k values.





















band.











| Compound | Structure               | Bandgap<br>(eV)      | e- mobility<br>(cm²/V-s) | h* mobility<br>(cm²/V-s) |
|----------|-------------------------|----------------------|--------------------------|--------------------------|
| Si       | Diamond                 | 1.11 (I)             | 1,350                    | 480                      |
| Ge       | Diamond                 | 0.67 (I)             | 3,900                    | 1,900                    |
| AIP      | Sphalerite              | 2.43 (I)             | 80                       |                          |
| GaAs     | ν,                      | eτ (D)               | 8,500                    | 400                      |
| InSb     | $\mu = \frac{v_d}{E} =$ | $=\frac{1}{m^*}$ (b) | 100,000                  | 1,700                    |
| AlAs     | Sphalerite              | 2.16 (I)             | 1,000                    | 180                      |
| GaN      | Wurtzite                | 3.4 (D)              | 300                      |                          |







Wave packet made of wavefunctions near a particular wavevector k

#### Motion of carrier in field:

**Parabolic** 

Group velocity: transmission velocity of a wave packet

$$v_g = \frac{d\omega}{dk} = \frac{1}{\hbar} \frac{dE}{dk}$$

Acceleration:

$$a = \frac{dv_g}{dt} = \frac{1}{\hbar} \frac{d^2 E}{dk dt} = \frac{1}{\hbar} \frac{d^2 E}{dk^2} \frac{dk}{dt}$$



Wave packet made of wavefunctions near a particular wavevector k

Motion of carrier in field:

Group velocity: transmission velocity of a wave packet

$$v_g = \frac{d\omega}{dk} = \frac{1}{\hbar} \frac{dE}{dk}$$

Acceleration:

$$a = \frac{dv_g}{dt} = \frac{1}{\hbar} \frac{d^2 E}{dk dt} = \frac{1}{\hbar} \frac{d^2 E}{dk^2} \frac{dk}{dt}$$

#### **Effective mass**

$$p = m * v = \hbar k$$
$$\frac{dv}{dt} = \frac{\hbar}{m} * \frac{dk}{dt}$$

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2}$$

Two possible energies at the BZ edge:

Standing waves: zero group velocity

$$\rightarrow \frac{dE}{dk} = 0$$



Chem 253, UC, Berkeley 🌑 🌑 🌑

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2}$$

Positive m\*: the band has upward curvature  $\frac{d^2E}{dk^2} > 0$ 

If the energy in a band depend only weakly on k, then m\* very large

$$m*/m>>1$$
 When  $\frac{d^2E}{dk^2}$  very small.

**Heavy carrier** 







| Chem 253, UC, Berkel | ley • •          |                      |            |
|----------------------|------------------|----------------------|------------|
| Group                | Material         | Electron $m_{\rm e}$ | Hole $m_h$ |
| IV                   | <u>Si</u> (300K) | 1.08                 | 0.56       |
| IV                   | <u>Ge</u>        | 0.55                 | 0.37       |
| III-V                | <u>GaAs</u>      | 0.067                | 0.45       |
| III-V                | <u>InSb</u>      | 0.013                | 0.6        |
| II-VI                | <u>ZnO</u>       | 0.29                 | 1.21       |
| 11-71                | <b>ZnSe</b>      | 0.17                 | 1.44       |
|                      |                  |                      |            |
|                      |                  |                      |            |

## **Excitons**

- The annihilation of a photon in exciting an electron from the valence band to the conduction band in a semiconductor can be written as an equation: ħω→e+h.
- Since there is a Coulomb attraction between the electron and hole, the photon energy required is lowered than the band gap by this attraction
- To correctly calculate the absorption coefficient we have to introduce a two-particle state consisting of an electron attracted to a hole known as an exciton









| Semiconductor | Energy gap<br>(eV)<br>at 273 K | Effective mass<br>m*/m |       | Dielectric |
|---------------|--------------------------------|------------------------|-------|------------|
|               |                                | Electrons              | Holes | constant   |
| Ge            | 0.67                           | 0.2                    | 0.3   | 16         |
| Si            | 1.14                           | 0.33                   | 0.5   | 12         |
| InSb          | 0.16                           | 0.013                  | 0.6   | 18         |
| InAs          | 0.33                           | 0.02                   | 0.4   | 14.5       |
| InP           | 1.29                           | 0.07                   | 0.4   | 14         |
| GaSb          | 0.67                           | 0.047                  | 0.5   | 15         |
| GaAs          | 1.39                           | 0.072                  | 0.5   | 13         |

| Chem 253, UC, Berkeley $ \bigcirc  $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ $ \bigcirc $ |      |                         |                                       |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------|---------------------------------------|-----------------|
| Exciton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                         | $r = 0.529 \frac{\varepsilon m}{\mu}$ |                 |
| Semiconductor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Eg   | µ/m                     | R <sub>x</sub> or E <sub>ex</sub>     | r <sub>ex</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | $(m_e^*/m_e;m_h^*/m_h)$ | meV                                   | nm              |
| Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.11 | 0.33; 0.50              | 14.7                                  | 4.9             |
| Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.67 | 0.2; 0.3                | 4.15                                  | 17.7            |
| GaAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.42 | 0.0616                  | 4.2                                   | 11.3            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | (0.066, 0.5)            |                                       |                 |
| CdSe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.74 | (0.13, 0.45)            | 15                                    | 5.2             |
| Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0    | 0.001                   | small                                 | >50             |
| ZnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4  | (0.27, ?)               | 59                                    | 3               |
| GaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4  | (0.19, 0.60)            | 25                                    | 11              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                         |                                       |                 |





















#### Photoluminescence (PL) spectroscopy

 fixed frequency laser, measure spectrum by scanning spectrometer

#### PL excitation spectroscopy (PLE)

- detect at peak emission, vary laser frequency
- effectively measures absorption

#### Time-resolved PL spectroscopy

- short pulse laser + fast detector
- measure lifetimes, relaxation processes













#### Fermi's Golden Rule:

•Time-dependent perturbation theory: treat excitations which depend on time
•Optical transition: view the solid with unperturbed Hamiltonian Ho as being perturbed by the time-dependent EM field H'(t) generated by the incident photon flux.

$$H = H_0 + H'(t)$$

**Transition Rate** 

$$\Gamma_{ml} = \frac{2\pi}{\hbar} \left| \left\langle m \middle| H \middle| l \right\rangle \right|^2 \delta(E_l - E_m - \hbar \omega)$$

ħω is the photon energy
+: emission
-: absorption



Atkins, Molecular Quantum Mechanics, Oxford



- $\bullet$  Excite using laser with photon energy >  $E_{\rm g}$
- electrons and holes relax to the bottom of their bands
- thermal distributions formed according to statistical mechanics
- $\bullet$  emission from  $E_{\rm g}$  to top of carrier distributions

#### Fermi's Golden Rule:

$$\Gamma = \sum\nolimits_{m,l} {\Gamma _{ml}} = \sum\nolimits_{m,l} {\frac{{2\pi }}{\hbar }{{{\left| \left\langle m\right|}{{\sf{H}}'}\left| l\right\rangle \right|}^2}} \delta ({{\sf{E}}_l} - {{\sf{E}}_m} - \hbar \omega )$$

$$\simeq \frac{2\pi}{\hbar} |\langle m|\mathsf{H}'|l\rangle|^2 \sum_{m,l} \delta(\mathsf{E}_l - \mathsf{E}_m - \hbar\omega)$$

Assume the state m and I are the valence and conduction band states.  $\langle m|H'|l\rangle = \langle v|H'|c\rangle = H'_{vc}$ 

Define: Joint density of states

$$\rho_{vc}(\hbar\omega) = \frac{2}{8\pi^3} \int dk \delta(\mathsf{E}_c(k) - \mathsf{E}_v(k) - \hbar\omega)$$

$$\Gamma = \frac{2\pi}{\hbar} |\mathsf{H}'_{vc}|^2 \varphi_{vc} (\mathsf{E}_c(k) - \mathsf{E}_v(k) - \hbar \omega)$$

Chem 253, UC, Berkeley 🌑 🤍 🤍



S is the surface of all possible direct optical transitions with  $h\omega$  = Ec - Ev

## Fermi's Golden Rule:

Let's introduce an energy surface S in k-space such that  $E_c - E_v = \hbar \omega$ 

$$d\mathsf{E} = |\nabla_k \mathsf{E}| dk_n$$

$$|\nabla_k(\mathsf{E}_c - \mathsf{E}_v)| dk_n = d(\mathsf{E}_c - \mathsf{E}_v)$$

$$d\mathbf{k} = dS dk_n = dS \left\{ \frac{d(\mathsf{E}_c - \mathsf{E}_v)}{|\nabla_k(\mathsf{E}_c - \mathsf{E}_v)|} \right\}$$

The joint density of states is then  $\rho_{vc}(\hbar\omega) = \frac{2}{8\pi^3}\int dk \delta(E_c(k) - E_v(k) - \hbar\omega)$ 

$$\rho_{vc}(\hbar\omega) = \tfrac{2}{8\pi^3} \int_{k\text{-space}} \tfrac{dSd(\mathsf{E}_c - \mathsf{E}_v) \delta(\mathsf{E}_c - \mathsf{E}_v - \hbar\omega)}{|\nabla_k(\mathsf{E}_c - \mathsf{E}_v)|}$$

Integrating over  $d(\mathsf{E}_c - \mathsf{E}_v)$  gives

$$\rho_{vc}(\hbar\omega) = \frac{2}{8\pi^3} \int_{k\text{-space}} \frac{dS}{|\nabla_k(\mathsf{E}_c - \mathsf{E}_v)|_{\mathsf{E}_c - \mathsf{E}_v - \hbar\omega}}$$





## Fermi's Golden Rule:

At critical point where

$$\nabla_k(\mathsf{E}_c - \mathsf{E}_v) \to 0$$

Large JDOS contribution.

Eule:
$$E = E_c + \frac{\hbar^2 k^2}{2m_e^*}$$

$$E = E_v - \frac{\hbar^2 k^2}{2m_h^*}$$
Filled

$$\mathsf{E}_c(k) - \mathsf{E}_v(k) = \mathsf{E}_g + \frac{\hbar^2 k^2}{2} \left( \frac{1}{m_c^*} + \frac{1}{m_v^*} \right) = \mathsf{E}_g + \frac{\hbar^2 k^2}{2m_r^*}$$

the gradient of 
$$\mathbf{E}_c - \mathbf{E}_v$$
 is  $\nabla_k (\mathbf{E}_c - \mathbf{E}_v) = \frac{\hbar^2 k}{m_r^*}$ 

$$\rho_{vc}(\hbar\omega) = \frac{2}{8\pi^3} \int \frac{dS}{|\nabla_k(\mathsf{E}_c - \mathsf{E}_v)|_{\mathsf{E}_c - \mathsf{E}_v - \hbar\omega}} = \frac{2}{8\pi^3} \left[ \frac{4\pi k^2}{\frac{\hbar^2 k}{m_r^2}} \right]_{\mathsf{E}_c - \mathsf{E}_v = \hbar\omega} = \frac{m_r^*}{\pi^2 \hbar^2} k$$

Chem 253, UC, Berkeley 🌑 🌑 🌑

# Fermi's Golden Rule:



To evaluate k, note that

$$\mathsf{E}_c - \mathsf{E}_v = \hbar\omega = \mathsf{E}_g + \frac{\hbar^2 k^2}{2m_r^*}$$

SO

$$k = \left[\frac{2m_r^*}{\hbar^2}(\hbar\omega - \mathsf{E}_g)\right]^{1/2}$$

and finally the joint density of states for a 2 band system with spherical, parabolic bands is

$$\rho_{vc}(\hbar\omega) = \frac{1}{2\pi^2} \left[ \frac{2m_r^*}{\hbar^2} \right]^{3/2} (\hbar\omega - \mathsf{E}_g)^{1/2}$$



Fermi's Golden Rule:

Spontaneous emission rate 
$$\Gamma(\omega) = \frac{2\pi}{\hbar} \left\langle \left| M \right|^2 \right\rangle \rho(\omega_{if})$$
 $\rho(\omega)$  Density of states

M: transition matrix elements

 $M_{if} = \int \psi_i V \psi_f dv$ 

Operator for the physical interaction that couples the initial and final states



# **Selection Rule: Electric Dipole (E1) Transition**

Light interaction with dipole moment (p=ex):  $H = E\overrightarrow{p} = eE\overrightarrow{x}$ 

Light as harmonic EM plane wave

 $E(x,t) = E_0 e^{i(kx - \omega t)}$ 

In general, the wavelength of the type of electromagnetic radiation which induces, or is emitted during, transitions between different atomic energy levels is much larger than the typical size of an

 $x << \lambda \Rightarrow kx = \frac{2\pi}{\lambda} x \approx 0$ 

Electric dipole approximation  $e^{ikx} \approx 1$ 

Transition dipole moment  $H_{mn}^{P}(0) = eE \int_{V} \Psi_{m} \vec{x} \Psi_{n} dV$ 

$$M_{12} \propto \int \psi_1 x \psi_2 d^3 r$$

For x, y, z polarized light  $M_{12} \propto \int \psi_1 y \psi_2 d^3 r$ 

 $M_{12} \propto \int \psi_1 z \psi_2 d^3 r$ 

Chem 253, UC, Berkeley 🌑 🌑



$$\Gamma(\omega) = \frac{2\pi}{\hbar} \left\langle \left| M \right|^2 \right\rangle \rho(\omega)$$

# **Selection Rule: Electric Dipole (E1) Transition**

$$M_{12} \propto \int \psi_1 x \psi_2 d^3 r$$

**Dipole Moment** 

$$M_{12} \propto \int \psi_1 y \psi_2 d^3 r$$

$$M_{12} \propto \int \psi_1 z \psi_2 d^3 r$$

Matrix element (dipole moment) is non-zero → allowed electric dipole transition

Parity of wavefunction: sign change under inversion about the origin

even parity: f(-x)=f(x) odd parity: f(-x)=-f(x)

→Initial/final wavefunctions must have different parities for allowed electric dipole transition!

#### **Electronic Transitions in H atoms**

Hydrogen atom: lowest state 1S, optical transition between 1S & 2S?

Both states are symmetric, angular momentum *l*=0

$$\psi_{15}(-x) = \psi_{15}(x)$$

$$\psi_{25}(-x) = \psi_{25}(x)$$

$$H_{21}^{P}(0) = \int_{-\infty}^{\infty} \psi_{2} \vec{x} \psi_{1} dv$$

$$= \int_{0}^{\infty} \psi_{2}(x) \vec{x} \psi_{1}(x) dv + \int_{0}^{\infty} \psi_{3}(-x)(-\vec{x}) \psi_{1}(-x) dv$$

$$= 0$$

No electronic transition between 1S and 2S!

Chem 253, UC, Berkeley 🌑 🔵 🧶

#### **Electronic Transitions in H atoms**

Hydrogen atom: lowest state 1S, optical transition between 1S & 2P? 2P is asymmetric, angular momentum *l*=1

$$\psi_{2p}(-x) = -\psi_{2p}(x)$$

$$+ \int_{0}^{\infty} \psi_{2}(x) \vec{x} \psi_{1}(x) dv$$

$$+ \int_{0}^{\infty} \psi_{2}(-x) (-\vec{x}) \psi_{1}(-x) dv$$

$$+ 0$$

**Electronic transition between 1S and 2P is allowed!** 



#### **Selection Rules**

Symmetric function (gerade):  $\Psi(-x) = \Psi(x)$ Asymmetric function (ungerade):  $\Psi(-x) = -\Psi(x)$ 

The operator of the electric field: -(x)=-x

Transition between two gerade functions:

$$H_{21}^{P}(0) = \int_{-\infty}^{\infty} gugdV = \int_{-\infty}^{\infty} udV = 0$$
 Forbidden

Transition between gerade and ungerade functions:

$$H_{21}^{P}(0) = \int_{-\infty}^{\infty} uugdV = \int_{-\infty}^{\infty} gdV \neq 0$$
 Allowed

Selection rule for electronic transition:

 $\Delta l = \pm 1$ 

Chem 253, UC, Berkeley 🌑 🌑 🥒



## **Electronic Transitions: Particle in a box**

ground state: g-symmetry

$$\Psi_0^0(-x) = \Psi_0^0(x)$$



1st exited state: u-symmetry  $\Psi_1^0(-x) = -\Psi_1^0(x)$ 

$$\Psi_1^0(-x) = -\Psi_1^0(x)$$



=> optical transition between ground and 1st excited state is allowed

2<sup>nd</sup> exited state: g-symmetry  $\Psi_2^0(-x) = \Psi_2^0(x)$ 





=> optical transition between ground and 2nd excited state is forbidden

 $\Rightarrow$  selection rule  $\Delta n = \pm 1$