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Chem 253, UC, Berkeley With periodic boundary conditions:
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For divalent elements: free –electron model
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For nearly free electron:

1. Interaction of electron with periodic potential opens 
gap at zone boundary

2.  Almost always Fermi surface will intersect zone 
Boundaries perpendicularly.

3.  The total volume enclosed by the Fermi surface depends 
only on total electron concentration, not on interaction

Chem 253, UC, Berkeley

Alkali Metal Na, Cs: spherical Fermi surface 

Alk. Earth metal: Be, Mg:: nearly spherical Fermi surface
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Brillouin Zone of Diamond and 
Zincblende Structure (FCC Lattice)

 Sign Convention
 Zone Edge or 

surface : Latin 
alphabets

 Interior of Zone: 
Greek alphabets

 Center of Zone or 
origin: 

Chem 253, UC, Berkeley
Band Structure of 3D Free Electron in FCC 
in reduced zone scheme

E(k)=(2/2m) (kx
2+ ky

2 + kz
2)

Notation:

<=>[100] direction

X<=>BZ edge along 
[100] direction

<=>[111] direction

L<=>BZ edge along 
[111] direction
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Comparison between Free Electron 
and Real Electron Band Structure of Si
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Motion of carrier in field:

Group velocity: transmission velocity
of a wave packet
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Motion of carrier in field:

Group velocity: transmission velocity
of a wave packet
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Heavy hole

Light hole

Chem 253, UC, Berkeley

Group Material Electron me Hole mh

IV
Si (300K) 1.08 0.56

Ge 0.55 0.37

III-V
GaAs 0.067 0.45

InSb 0.013 0.6

II-VI
ZnO 0.29 1.21

ZnSe 0.17 1.44
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Excitons
 The annihilation of a photon in exciting an 

electron from the valence band to the conduction 
band in a semiconductor can be written as an 
equation: e+h. 

 Since there is a Coulomb attraction between the 
electron and hole, the photon energy required is 
lowered than the band gap by this attraction

 To correctly calculate the absorption coefficient 
we have to introduce a two-particle state
consisting of an electron attracted to a hole 
known as an exciton

Chem 253, UC, Berkeley

– Excitons represent the elementary excitation of a semiconductor. In the 
ground state the semiconductor has only filled or empty bands. The 
simplest excitation is to excite one electron from a filled band to an empty 
band and so creating an electron and a hole

– Exciton is neutral over all but carries an electric dipole moment and 
therefore can be excited by either a photon or an electron
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Semiconductor
Energy gap 

(eV)
at 273 K

Effective mass 
m*/m Dielectric 

constant
Electrons Holes

Ge 0.67 0.2 0.3 16

Si 1.14 0.33 0.5 12

InSb 0.16 0.013 0.6 18

InAs 0.33 0.02 0.4 14.5

InP 1.29 0.07 0.4 14

GaSb 0.67 0.047 0.5 15

GaAs 1.39 0.072 0.5 13
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Exciton
Semiconductor Eg Rx or Eex

meV

rex

nm

Si 1.11 0.33; 0.50 14.7 4.9

Ge 0.67 0.2; 0.3 4.15 17.7

GaAs 1.42 0.0616

(0.066, 0.5)

4.2 11.3

CdSe 1.74 (0.13, 0.45) 15 5.2

Bi 0 0.001 small >50

ZnO 3.4 (0.27, ?) 59 3

GaN 3.4 (0.19, 0.60) 25 11
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h
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Exciton binding
energy

Related to DOS
otherwise dissociates
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Implication in solar cell

Chem 253, UC, Berkeley

Thin film PV

Si PV
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Fermi’s Golden Rule:

Transition Rate

Atkins, Molecular Quantum Mechanics, Oxford

•Time-dependent perturbation theory: treat excitations which depend on time
•Optical transition: view the solid with unperturbed Hamiltonian H0 as being 
perturbed by the time-dependent EM field H’(t) generated by the incident photon flux.

)('0 tHHH 








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2 2

 mlml EElHm

is the photon energy
+: emission
-: absorption

Chem 253, UC, Berkeley
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Fermi’s Golden Rule:

Assume the state m and l are the valence and conduction band states, 
then

vcHcHvlHm ''' 
Define: Joint density of states

Chem 253, UC, Berkeley

Fermi’s Golden Rule: S

dkn

Let's introduce an energy surface S in k-space such 
that Ec − Ev =

dk =dSdkn
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S is the surface of all possible direct optical 
transitions with h = Ec - Ev
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Fermi’s Golden Rule:
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Fermi’s Golden Rule:
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 ifM  22
)(




Fermi’s Golden Rule:

() Density of states

M: transition matrix elements

Spontaneous 
emission rate

dvVM fiif 
Operator for the physical interaction
that couples the initial and final states
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Selection Rule: 
Electric Dipole (E1) Transition

Light interaction with dipole moment (p=ex): xeEpEH 

In general, the wavelength of the type of electromagnetic radiation which induces, or is emitted 
during, transitions between different atomic energy levels is much larger than the typical size of an 
atom. 

1ikxeElectric dipole approximation

)(
0),( tkxieEtxE 

Light as harmonic EM plane wave
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For x, y, z polarized light
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Selection Rule: 
Electric Dipole (E1) Transition

Dipole Moment

Matrix element (dipole moment) is non-zero  allowed electric dipole transition

Parity of wavefunction: sign change under inversion about the origin
even parity: f(-x)=f(x)
odd parity:  f(-x)=-f(x)

Initial/final wavefunctions must have different parities
for allowed electric dipole transition!
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Electronic Transitions in H atoms

Hydrogen atom: lowest state 1S, optical transition between 1S & 2S?
Both states are symmetric, angular momentum l=0

No electronic transition between 1S and 2S!

Chem 253, UC, Berkeley

Electronic Transitions in H atoms

Hydrogen atom: lowest state 1S, optical transition between 1S & 2P?
2P is asymmetric, angular momentum l=1

Electronic transition between 1S and 2P is allowed!



32

Chem 253, UC, Berkeley

Selection Rules

Symmetric function (gerade):
Asymmetric function (ungerade): 

The operator of the electric field: -(x)=-x

)()(

)()(
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
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Transition between two gerade functions:

Transition between gerade and ungerade functions:
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



gdVuugdVH

udVgugdVH

P

P
Forbidden

Allowed

Selection rule for electronic transition: 1l

Chem 253, UC, Berkeley

Electronic Transitions: Particle in a box


