Elementary Band Theory for Extended Solids

W =2 {(coskna + isinkna)¢,}

1-dimensional case

1-D Brillouin zone from -a*/2 to a*/2

w(k)= Y 6™,

a* =2n/a

Consider k = 0:
cos(kna) = cos(0) = 1
sin(kna) = sin(0) =0
VEZ0,=do+ o+ + s+ ...

zone center I”

-tla<k<nla

Consider k =n/a: zone border X
cos(kna) = cos(rn) = (-1)"
sin(kna) = sin(zn) = 0

Y=Z (1) =0g- 01+ -5+ ...

Elementary Band Theory for Extended Solids
More dimensions: a two-dimensional square net [s orbitals only (or p,)]
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Brillouin zone

l//(k) _ Zeikxma+ikyna -¢m’n

Consider the crystal orbitals
at special k points (high symmetry)

zone center I

I'=(k =0, k,=0, k,=0) X = (n/a, 0, 0)
M = (n/a, n/a, 0) Y =(0,n/a, 0) H
R = (n/a, n/a, m/a) 7 =(0.0, n/a) alla.o. in phase




Elementary Band Theory for Extended Solids

More dimensions: a two-dimensional square net [s orbitals only (or p,)]
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Crystal orbitals at special k points
ky =7r/(2a) ky =0 ky, ky = 7 /(20) k=0, ky=7/(20)

ky = /0, ky=0
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How to calculate E(k)?
l//(k) _ Zeikxma+ikyna .¢m’n
Crystal Schrodinger Equation:  Hy (K) = E(K)w (K)

<y (Al () >
<y Q) (K) >

E(k) =

E(k) =a+2p(cosk,a+cosk,a)
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E(k) =a+2p(cosk,a+cosk, a)

W =4Z3
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E(k) =a+2p(cosk,a+cosk, a)

DOS




Elementary Band Theory for Extended Solids
More dimensions: a two-dimensional square net [s and p orbitals]

Crystal orbitals at special k points 9
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schematic band structure
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'B‘};; E(k) =a +2, cosk.a+2p, cosk,b
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ﬁh;; E(k) =a+2p, cosk,a+2/4, cosk b
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ﬁa<ﬂbzo
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'B'“;; E(k) =a +2, cosk.a+2p, cosk,b
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ﬂh;; E(k)=a+2p, cosk,a+2p, cosk,b
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Fermi Surface

For free electrons, the constant energy surfaces are circular.

£() = hzkf /@\ .
2m K

For a monovalent element, the volume of the Fermi surface is half
that of the Brillouin zone:
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E(k)=a+2p, cosk,a+2p, cosk,b
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E(k) =a+2p, cosk,a+2/, coskb
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E(k)=a+2p, cosk,a+2p, cosk,b

B.=p, <0 Y r X M Y
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Fermi surface nestlng

When a piece of a Fermi surface can be translated by a vector q
and superimposed on another piece of the Fermi surface, the Fermi
Surface is said to be nested by the vector g.
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Important consequence of Fermi Level nesting:

A metallic system with a nested Fermi surface possesses electronic
Instability and is likely to undergo a metal-insulator transition.
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Vector (: defines the way the structure changes/distorts

1D: g=b/2 -> doubling of unit cell Ke :izz—ﬂizg
2 a 4 4
1D
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b:_ — -
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P —a—s —
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after” %
o} k—= w/(2a)

Peierls Distortion
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In general, for 1D (unit cell a) if kF =b/m

b= 27

Then, the new (electronically stabilized) u%t cell will be

M/2 times the old one.

Example: H2
polyacetylene

ke =212 _pim
2a 4 a

Chem 253, UC, Berkeley @

Distortion does not necessary commensurate with the lattice.
1.7
Metal > 150K d,= 50 full = 0.85full

k. =0.4250 = 2 k. —b/m
2.35 b 2T
1D z .
; a
Stabilized Cell:
2.35
—=1.175
2
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In general, when a unit cell size is increased n-fold by a distortion,

The band is split into n subbands.
Consequently, a 1D system having a partially filled band of

occupancy 1/nor (n-l)/n is likely to undergo a distortion which

increase the unit cell I times.
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Elementary Band Theory for Extended Solids
More dimensions: the 2D hexagonal net of graphite

2D LATTICE ,/ “
X /’u
: v

- -
Atom 1. (0,0)
Atom2 (2/3 1ig)

Unit Cells

[

Atom 1: (2, 1/3)
Aom2 (/g 2fg)
FRACTFONAL Atornic b y) coondinates
(As afraction of unit cell dimension)
Ze true dimensions are avand Sy 7 orbitals: pZ’

viewed from

jt\‘]\%H/\/[ Z Z e
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E(A) = E(B) = E(K)

Rotational/translational symmetry

Elementary Band Theory for Extended Solids

More dimensions: the 2D hexagonal net of graphite

Brillouin zone B B(£1£)

band structure

a-38
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Elementary Band Theory for Extended Solids
More dimensions: the 2D hexagonal net of graphite

2D LATTICE ,/ “
; : ‘ X /a
. . : ;

4——b—b
Atom 1. (0 0)

Atom2 (2ig 1/3)

Unit Cells

i

Atom 1: ( 2/, 1ig)
atom2 (/g 215)

FRACTFONAL Atoric fcy) coondinates
(As afraction of unit cell dimension)

Z& true dimensions are arvand £y T Ol’bita|S: le

viewed from

the top.
Z Z 2 per cell.

Elementary Band Theory for Extended Solids
More dimensions: the 2D hexagonal net of graphite

Extended Hiickel,
all interactions

Simple Hiickel;
only = interactions (p, orbital)
a-38 ) -5k
a-B E(eV) n
[ B r ~-EF |o
a+rps x
a+38 % ‘T\
r
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T
Fermi energy
Eg
T

7

two ,,Fermi cones*
at zone boundary

Elementary Band Theory for Extended Solids
More dimensions: the 3D structure of graphite

abec Alom Positions
a-p-or (000) (213,1/5,0)
y=12  (0,0,1/y) (1/5,2/3,17,)

e
7 orbitals:
4 per cell.
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Elementary Band Theory for Extended Solids

More dimensions: the 3D structure of graphite b

M K r M
Extended Hiickel;
2D

o
Brillouin zone

"ab initio"; 3D

Elementary Band Theory for Extended Solids

More dimensions: the 2D hexagonal net of BN

Y

n orbitals: p,,

viewed from the top.
n* 1B+ 1 N per cell.

N is larger and more electronegative,
compared to B. /\
1
— x
Simple Hiickel;
only = interactions (p, orbitals) E(eV)
e
Er EF_ (+]
BN N S cugall ®
° -ns.\
WEATTE Extended Hiickel;
allinteractons M K T M
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