Elementary Band Theory for Extended Solids

$$\psi_k = \sum_n \{(\cos kna + i\sin kna)\phi_n\}$$

$$\psi(k) = \sum_{n} e^{inka} \phi_n$$

1-dimensional case

$$a^* = 2\pi/a$$

Consider k = 0: zone center Γ

$$cos(kna) = cos(0) = 1$$
$$sin(kna) = sin(0) = 0$$

Consider
$$k = \pi/a$$
: zone border X

$$\cos(\text{kna}) = \cos(0) = 1$$
 $\cos(\text{kna}) = \cos(\pi n) = (-1)^n$ $\sin(\text{kna}) = \sin(0) = 0$ $\sin(\text{kna}) = \sin(\pi n) = 0$ $\psi = \sum \phi_n = \phi_0 + \phi_1 + \phi_2 + \phi_3 + \dots$ $\psi = \sum (-1)^n \phi_n = \phi_0 - \phi_1 + \phi_2 - \phi_3 + \dots$

Elementary Band Theory for Extended Solids

More dimensions: a two-dimensional square net [**s** orbitals only (or p_z)]

Simple Hückel

r.l.

Brillouin zone

Consider the crystal orbitals at special k points (high symmetry)

 $\Gamma = (k_x = 0, k_y = 0, k_z = 0)$ $M = (\pi/a, \pi/a, 0)$ $R=(\pi/a,\,\pi/a,\,\pi/a)$

 $X = (\pi/a, 0, 0)$ $Y = (0, \pi/a, 0)$ $Z = (0, 0, \pi/a)$

zone center Γ

all a.o. in phase

Chem 253, UC, Berkeley 🌑 🌑 🌑

How to calculate E(k)?

$$\psi(k) = \sum_{m,n} e^{ik_x ma + ik_y na} \cdot \phi_{m,n}$$

Crystal Schrodinger Equation: $H\psi(k)=E(k)\psi(k)$

$$E(k) = \frac{\langle \psi^*(k) | \hat{H} | \psi(k) \rangle}{\langle \psi^*(k) | \psi(k) \rangle}$$

$$E(k) = \alpha + 2\beta(\cos k_x a + \cos k_y a)$$

Chem 253, UC, Berkeley 🌑

In general, for 1D (unit cell a) if $k_F = b/m$

$$b = \frac{2\pi}{}$$

Then, the new (electronically stabilized) unit cell will be

m/2 times the old one.

Example: H2

polyacetylene

$$k_F = \frac{\pi}{2a} = \frac{1}{4} \frac{2\pi}{a} = b/m$$

Chem 253, UC, Berkeley 🌑 🌑 🌑

Distortion does not necessary commensurate with the lattice.

$$K_2Pt(CN)_4Cl_{0.3}$$

Metal > 150K
$$d_{z^2} = \frac{1.7}{2.0} full = 0.85 full$$

Stabilized Cell:

$$\frac{2.35}{2} = 1.175$$

