Light-Induced Charge Transport within a Single Asymmetric Nanowire

Chong Liu,†§ Yun Jeong Hwang,†§ Hoon Eui Jeong,† and Peidong Yang*,†‡§

†Department of Chemistry, and ‡Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
§Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire using Kelvin probe force microscopy. Under UV illumination, higher surface potential was observed on the n-TiO2 side, relative to the potential of the p-Si side, as a result of majority carriers’ recombination at the Si/TiO2 interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered.

KEYWORDS: Charge separation, Kelvin probe force microscopy (KPFM), asymmetric nanowire, dual band gap configuration, solar water splitting

A semiconductor used for direct solar water splitting is required to be photoelectrochemically stable, to have an appropriate band gap that can support broad absorption of the solar spectrum as well as band edges at suitable potentials for the water reduction/oxidation half reactions, and to perform fast charge transfer at the semiconductor/electrolyte interface and efficient evolution of hydrogen and oxygen. Because of the stringent requirements on the band gap and band edge energies, early research efforts have focused on semiconductors with relatively large band gaps, which are mostly UV-absorbing semiconductors. On the other hand, the dual-band gap approach enables the usage of smaller band gap materials for much better coverage of the solar spectrum, and it was predicted that such a scheme could lead to a PEC system with energy conversion efficiency as high as η = 27%.8

In natural photosynthetic systems, a process involving two photons is in operation for the oxidation of water and storage of the solar energy in sugar. Similarly, in an ideal dual-band gap PEC cell, two photons could be used to excite the two semiconductors that are in close contact. The minority carriers of the two semiconductors will oxidize and reduce water, while the majority carriers recombine at the semiconductor junction. Chemical redox mediators or metal can be introduced for fast electron transfer between the two semiconductors. In this work, an asymmetric Si/TiO2 core/shell nanowire heterostructure was designed (Figure 1a) to explore the feasibility of such a dual-band gap scheme for direct solar water splitting. Although TiO2 has been widely studied in photodegradation for environmental applications and water splitting, its wide band gap, fast carrier recombination, and back reaction limit the energy conversion efficiency. On the other hand, silicon possesses the proper conduction band edge for reduction of water to generate H2 and absorbs visible light. These asymmetric Si/TiO2 nanowire heterostructures are desirable for direct solar water splitting with the water oxidation reaction on the TiO2 surface and the reduction reaction on the Si surface. In this study, charge separation within this asymmetric structure is observed at the single nanowire level. Using Kelvin probe force microscopy (KPFM) under conditions that mimic the environment of real water splitting, the light-induced local surface potential change within a single asymmetric nanowire is mapped to demonstrate the proposed spatial charge separation mechanism. These experiments

Received: May 26, 2011
Revised: July 14, 2011
Published: July 18, 2011
suggest that a dual-band gap asymmetric configuration with exposed anode and cathode surfaces induce charge separation at semiconductor/electrolyte interface. Such a structure represents an ideal platform for the development of technologies to generate solar fuels.

The asymmetric Si/TiO$_2$ core–shell nanowire structures were synthesized with one part consisting of a Si nanowire and the other part consisting of a Si/TiO$_2$ core–shell structure (Figure 1a). This asymmetric structure ensures large contact area and charge separation/collection efficiency across the semiconductor/semiconductor and the semiconductor/electrolyte junction.15,19 A detailed synthesis scheme is illustrated in Supporting Information Figure S1. Si nanowires were grown vertically on a Si (111) substrate via the vapor–liquid–solid (VLS) mechanism,22 and the amorphous TiO$_2$ shell was conformally coated by atomic layer deposition (ALD) at 80 °C. With the bottom half of the structures protected by photoresist, the top part of the TiO$_2$ shell was removed by HF etchant, which resulted in arrays of asymmetric Si/TiO$_2$ core/shell nanowires (Figure 1b). Additional annealing at 600 °C transformed amorphous TiO$_2$ into the anatase structure, which was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM).

Scanning electron microscopy (SEM) and TEM images show that these asymmetric Si/TiO$_2$ nanowires are typically 5–6 μm in length with a Si core of 120 nm in diameter and a TiO$_2$ layer of 30 nm in thickness (Figure 1c–f). A sharp junction between the Si and Si/TiO$_2$ core/shell parts was generated, and the nanowires remained vertical on the Si substrate after all the processing steps. The TiO$_2$ layer often had single-crystalline domains of up to 100 nm.19

For such asymmetric nanowire heterostructures with the dual-band gap configuration, electron–hole pairs can be generated in the silicon and TiO$_2$ using photons of different wavelengths. Because of the band-bending of the space-charge layer at the semiconductor/electrolyte interface,3 solar illumination would leave positively charged holes on the n-TiO$_2$ side (anode behavior) and negatively charged electrons on the p-Si side (cathode behavior) with the recombination of majority carriers between the two semiconductors (Figure 2a). As the result, a dipole along the asymmetric nanowire is expected with more positive electrical potential in the n-TiO$_2$ part relative to that of the p-Si part when both the Si and TiO$_2$ absorb light (Figure 2a,b). The minority carriers of both semiconductors with proper energetics are ready to perform a complete water splitting reaction.7

To examine this charge separation, KPFM18 was used to map the surface potential distribution of an isolated asymmetric nanowire (Figure 2c–f). An asymmetric Si/TiO$_2$ nanowire was transferred onto an insulating fused silica substrate and 365 nm

![Figure 1.](image-url)
UV light was applied to excite both Si and TiO$_2$ (Supporting Information Figure S2). Controlled humidity was applied to condense water onto the nanowire surface$^{23-25}$ and to establish semiconductor/electrolyte interfaces. In the dark, the surface potential of the Si/TiO$_2$ core/shell part is about 15 mV higher than that of the Si-only part (Figure 2d), mainly due to the work function difference between these two materials.18 Under UV illumination, the local surface potential of the Si/TiO$_2$ part is significantly more positive (by 60 mV) than that of the Si (Figure 2e), indicating positive charge buildup on the Si/TiO$_2$ part as expected. This photosresponse of the surface potential is reversible (Figure 2f), suggesting that the change of the surface potentials originates from UV illumination. Control experiments with both pristine Si nanowires and complete Si/TiO$_2$ core/shell
nanowires showed no comparable surface potential changes (See Supporting Information Figures S3 and S4). Changing the wavelength of illumination to 465 nm also gave no significant change in the surface potential’s profile (see Supporting Information Figure S5). Photoexcitation of both semiconductors, and in this case UV-activation of TiO₂, was necessary for effective charge separation and dipole formation.

The surface potential difference between the Si and Si/TiO₂ increased gradually as the light intensity was increased (Figure 3). The surface potentials on the Si/TiO₂ part were not uniform under illumination (Figure 3a), probably because of the domain structure of the TiO₂ shell. Despite this nonuniform profile, the trend of saturation at high light intensity (Figure 3b) is in accordance with the expected behavior of the dual-band gap configuration with flattening of the band at the semiconductor/electrolyte interface. The result also suggests that photogenerated minority holes in the TiO₂ layer and electrons in the Si core can be efficiently separated in our asymmetric core/shell nanostructures.

As a powerful technique to resolve the surface potential of materials spatially, KPFM has been widely applied in surface chemistry, light emitting diodes, and solar cells.18,23,27 In this study, we applied this technique to a photoelectrochemically relevant nanostructure and examined the photoresponses of the surface potential at the semiconductor/electrolyte and semiconductor/semiconductor heterojunctions. The light-induced charge transport within an asymmetric nanowire was observed through KPFM in a dual-band gap configuration, indicating that the minority carriers of the semiconductors are separated while the majority carriers of the semiconductors recombine at the interface. This asymmetric nanostructure design using the dual-band gap configuration is applicable to other semiconductors, and the overall solar energy conversion efficiency can potentially be improved by coupling two visible light absorbers that balance the photoexcited carrier generation rate upon solar irradiation.7,8

■ ASSOCIATED CONTENT

Supporting Information. Synthesis details of the asymmetric nanowires and control experiments of the KPFM measurement. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: p_yang@berkeley.edu.

Author Contributions
†These authors contributed equally to this work.

■ ACKNOWLEDGMENT

We thank S. Brittman and A. Zhao for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

■ REFERENCES