Supporting Information

Effect of Thermal Annealing in Ammonia on the Properties of InGaN Nanowires with Different Indium Concentration

Christopher Hahn, Amy A. Cordones, Sean C. Andrews, Hanwei Gao, Anthony Fu, Stephen R. Leone*,§ and Peidong Yang*

Department of Chemistry, University of California, Berkeley, California 94720

Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720

*Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720

§Department of Physics, University of California, Berkeley, California 94720

*Address correspondence to p_yang@berkeley.edu
Figure S11. HAADF STEM images of as grown and annealed In$_x$Ga$_{1-x}$N nanowires. HAADF STEM images of (A-D) as grown and (E-H) annealed nanowires show the instability of In$_x$Ga$_{1-x}$N nanowires with from increasing the indium composition. Significant surface etching was observed for samples (C,G) $x = 0.28$ and (D,H) $x = 0.42$ after annealing. Scale bar = 20 nm.
Figure SI2. XRD spectra of as grown and annealed In$_x$Ga$_{1-x}$N nanowires. (A) High angle wurtzite 103 and 201 diffraction peaks for sample $x = 0.17$ show no peak splitting after annealing, indicating that lower indium composition nanowires are phase stable. (B) The XRD spectrum for sample $x = 0.42$ reveals In$_x$Ga$_{1-x}$N wurtzite (blue) and In tetragonal (red) peaks, showing that nanowires decompose into In metal during the annealing process. (C) The high angle wurtzite 103 peak for sample $x = 0.42$ splits into multiple peaks after annealing at 800°C, indicating that higher indium composition In$_x$Ga$_{1-x}$N nanowires are metastable and phase separate at high temperatures.

Figure SI3. HRTEM image of sintered InGaN nanowires. The HRTEM image shows a clear shift in lattice orientation from the bottom nanowire to the top nanowire, indicating that as grown InGaN nanowires are likely tilted/twisted in orientation from mosaic
growth. As a result, an increase in dislocation density can be seen at the interface of sintered InGaN nanowires (dashed area).

Figure S14. PL spectra of as grown and annealed In$_x$Ga$_{1-x}$N nanowires. PL spectra for sample $x = 0.07$ show that the intensity of band-edge PL increases with annealing temperature.
Figure SI5. Color PL images of as grown and annealed In$_x$Ga$_{1-x}$N nanowires. Color PL images of as grown samples (A) $x = 0.07$, (B) $x = 0.17$, (C) $x = 0.28$, and (D) $x = 0.42$ demonstrate the ability to tune the emission wavelength with indium composition. (E-H) The corresponding annealed nanowire arrays increase in intensity from an improvement in QE. (G,H) The PL of higher indium composition arrays changes in color from indium etching.

Figure SI6. Time-resolved PL spectra of as grown and annealed In$_x$Ga$_{1-x}$N nanowires. Time-resolved PL spectra of as grown and annealed samples (A) $x = 0.28$ and (B) $x = 0.42$ show fast initial decay of the PL intensity. The majority of the signal is limited by the instrument response function (shown in black).