Supporting Information for "Simultaneously Efficient Light
 Absorption and Charge Separation in $\mathrm{WO}_{3} / \mathrm{BiVO}_{4}$ Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation"

Pratap M. Rao, ${ }^{\ddagger \S \dagger}$ Lili Cai, ${ }^{\ddagger \dagger}$ Chong Liu, ${ }^{\#}$ In Sun Cho, ${ }^{\dagger}$ Chi Hwan Lee, ${ }^{\dagger}$ Jeffrey M. Weisse, ${ }^{\dagger}$ Peidong Yang ${ }^{\# \$}$ and Xiaolin Zheng ${ }^{\dagger}$ *
${ }^{\dagger}$ Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
\# Department of Chemistry, University of California, Berkeley, CA 94720
${ }^{\$}$ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
*Corresponding author e-mail: xlzheng@stanford.edu

Figure S 1 . Quantification of the W -doping concentration in the $\mathrm{W}: \mathrm{BiVO}_{4}$ shell of $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4}$ NWs by X-ray diffraction (XRD). As W is doped into BiVO_{4}, the BiVO_{4} crystal structure becomes distorted. ${ }^{1}$ The extent of this distortion is used to estimate the W -doping level in the $\mathrm{W}: \mathrm{BiVO}_{4}$ shell of the $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4} \mathrm{NWs}$ by comparison of the XRD pattern of the NWs with those of BiVO_{4} films prepared with known W-doping levels. (a) The XRD pattern of the $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4} \mathrm{NWs}$ is compared to those of pure, 3% and $7 \% \mathrm{~W}$-doped BiVO_{4} films. Consistent with previous reports, ${ }^{1-4}$ for the (200) and (002) peaks of undistorted BiVO_{4} at $2 \theta=$ 34.5 and 35.2°, denoted by the left arrow in (a) and enlarged in (b), and the (240) and (024) peaks of undistorted BiVO_{4} at $2 \theta=46.7$ and 47.3°, denoted by the right arrow in (a) and enlarged in (c), both converge to form single peaks when the W -doping is 7%, while separate peaks are clearly distinguishable even at 3% doping. Since the peaks in the $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4} \mathrm{NWs}$ have nearly converged, the average W -doping level in the BiVO_{4} shell is estimated to be about 7%. The peak indicated by an arrow in (c) is due to WO_{3}.

Figure S2. Scanning Electron Microscope (SEM) images of samples synthesized in this work. Left: side view, Right: top view of WO_{3} nanowires (NWs), $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4}$ core/shell NWs and $7 \mathrm{at} \% \mathrm{~W}: \mathrm{BiVO}_{4}$ film (containing the same mass of Bi as coated onto the $\mathrm{WO}_{3} \mathrm{NWs}$). The scale bar applies to all images in the panel.

Figure S3. Histogram of diameters of the bare $\mathrm{WO}_{3} \mathrm{NWs}$ and the $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4}$ core/shell NWs. The bare $\mathrm{WO}_{3} \mathrm{NWs}$ have a 75 nm average diameter and the average $\mathrm{W}: \mathrm{BiVO}_{4}$ shell thickness is 60 nm .

Figure S4. Spectral output of illumination sources used in this work. (a) Spectral irradiance of the class-AAA Solar Simulator ($85 \mathrm{~mW} / \mathrm{cm}^{2}$ overall intensity) used to measure current-voltage ($J-V$) curves, measured with a calibrated spectroradiometer, compared to the air mass 1.5 global (AM 1.5G, ASTM-G173-3) standard. For both the simulated illumination and the AM 1.5G standard, the integrated photon current up to a wavelength of 515 nm (the band gap of BiVO_{4}) corresponds to a photocurrent of $7.5 \mathrm{~mA} / \mathrm{cm}^{2}$, thereby indicating that the simulated sunlight is an accurate representation of the standard. (b) Irradiance of Xe lamp with monochromator, used for incident photon-to-current conversion efficiency (IPCE) measurements, measured with a calibrated silicon photodiode.

Figure S5. Reflectance of the $\mathrm{WO}_{3} / \mathrm{W}: \mathrm{BiVO}_{4}$ core/shell NWs and the 7 at $\% \mathrm{~W}: \mathrm{BiVO}_{4}$ film (containing the same mass of Bi as coated onto the $\mathrm{WO}_{3} \mathrm{NWs}$).

Figure S6. Measurement of conductance of single $\mathrm{WO}_{3} \mathrm{NWs}. \mathrm{WO}_{3} \mathrm{NWs}$ were removed from the growth substrate by sonication in IPA and then drop-casted onto a $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate, after which Pt contacts were deposited on both ends of the $\mathrm{WO}_{3} \mathrm{NW}$ using a focused ion beam (FEI Strata DB235). The current-voltage ($I-V$) measurements were conducted at room temperature using a semiconductor analyzer (Keithley Model 4200-SCS) with tungsten probes. A measured WO_{3} NW is shown in the SEM inset (52° tilt). A conductance of $6 \times 10^{-6} \mathrm{~S}$ was calculated based on a current of $6.3 \mu \mathrm{~A}$ at an applied voltage of 1 V , and a conductivity of $5 \mathrm{~S} / \mathrm{cm}$ was calculated based on the NW diameter of 160 nm and length of 1600 nm (corrected for tilt). Since WO_{3} is an ntype material and the measurement was performed in the dark, this is purely a measure of electron conductivity. The measured conductivity closely matches the conductivity of single crystal monoclinic $\mathrm{WO}_{3} \mathrm{NWs}$ with the same [001] growth direction found by others using conductive atomic force microscopy ($\sim 1.8 \mathrm{~S} / \mathrm{cm}$). ${ }^{5,6}$

Figure S7. The Nyquist plot from the impedance measurement of a $7 \% \mathrm{~W}$-doped BiVO_{4} film, and the equivalent circuit used to fit the measured data. The AC impedance was measured in the dark at room temperature using a 2-probe setup and an impedance analyzer (Agilent Model 4294A) with an applied potential of 500 mV over the frequency range of 40 Hz to 10 MHz . One probe was attached to the exposed surface of a conductive FTO (fluorine-doped tin oxide) glass sheet coated with a $7 \mathrm{at} \% \mathrm{~W}: \mathrm{BiVO}_{4}$ film. The second probe was connected to a piece of adhesive copper tape (Ted Pella) pressed onto the $\mathrm{W}: \mathrm{BiVO}_{4}$ film. The Nyquist plot shows a broadened arc which can be decomposed into semicircles by means of the equivalent electrical circuit, which consists of three pairs of parallel-connected capacitors and resistors connected in series. Pair \# 1 produces the high-frequency semicircle and is due to the bulk impedance; pair \# 2 produces the middle-frequency semicircle and is due to the grain boundary impedance; and Pair \# 3 produces the low-frequency semicircle and is due to the film/electrode interface impedance. The bulk conductivity was calculated to be $4 \times 10^{-8} \mathrm{~S} / \mathrm{cm}$ from the fitted value of R_{1} (125 ohm), using the film thickness measured from cross-section SEM images (50 nm), and the area of the copper tape $\left(1 \mathrm{~cm}^{2}\right)$. Since $\mathrm{W}: \mathrm{BiVO}_{4}$ is an n-type material and the measurement was performed in the dark, this is purely a measure of electron conductivity.

References

1. Park, H. S.; Kweon, K. E.; Ye, H.; Paek, E.; Hwang, G. S.; Bard, A. J. J. Phys. Chem. C 2011, 115, 17870-17879.
2. Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011, 133, 18370-18377.
3. Berglund, S. P.; Rettie, A. J. E.; Hoang, S.; Mullins, C. B. Phys. Chem. Chem. Phys. 2012, 14, 70657075.
4. Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Energy Environ. Sci. 2011, 4, 5028-5034.
5. Delamare, R.; Gillet, M.; Gillet, E.; Guaino, P. Surf. Sci. 2007, 601, 2675-2679.
6. Gillet, M.; Delamare, R.; Gillet, E. Eur. Phys. J. D 2005, 34, 291-294.
