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Table S1. EXAFS Curve Fitting Parameters 
Path R(Å) N σ2(Å2) ΔE0(eV) S0 Rf (%) 
Mn-O 2.03 4 .00386 2.6576 0.8607 

 
1.6 

Mn-O 2.15 2 .00428 
Mn-Ti 3.30 4 .0104 
Mn-Ti 3.79 4 .0127 
 
The coordination number N was taken to be fixed for the crystalline material. S0 and ΔE0 were fit 
to the same value for all paths as they are properties of the central atom. 
 
X-Ray Photoelectron Spectroscopy  
Sample Source Δ2p1/2 (eV) Δ3s (eV) 

MnO This work 
Ref S1 
Ref S2 

6.0 
6.0 
5.4 

6.1 
6.0 
6.1 

Mn2O3 This work 
Ref S1 
Ref S2 

10.1 
10.0 
10.5 

5.2 
5.1 
5.4 

MnO2 This work 
Ref S1 
Ref S2 

12.0 
11.8 
11.9 

4.7 
4.5 
4.5 

As deposited  10.75 5.3 
Annealed  6.2 6.0 
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Transient Diffusion of Mn in TiO2 Nanowires  
 
The transient diffusion of Mn in the TiO2 nanowire can be described by Fick’s Second Law: 
 

߲ ஺ܿ

ݐ߲
ൌ ஺஻ܦ

߲ଶ ஺ܿ

ଶݔ߲
 

 
Where �� is the concentration of Mn and x is the distance from the edge of the nanowire. The 
solution for diffusion into a finite medium solution can be obtained numerically and is available 
in for simple geometric shapes in Gurney-Lurie charts. The numerical solution would predict a 
more rapid conversion than the solution for a semi-infinite medium but otherwise similar 
diffusion profiles. Therefore as a simple approximation, the nanowire can be considered a semi-
infinite medium to yield an analytical solution:  
 

஺ܿ௦ െ ஺ܿ
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The surface concentration of Mn (���ሻ	can be taken as unity as the nanowire shell is manganese 
oxide. The initial concentration of Mn in the nanowire (��଴) is zero.  
From single crystal studies the diffusion coefficients of various transition metals in rutile TiO2 at 
different partial pressures of oxygen are known.3 The diffusion coefficients of interest here are 
those orthogonal to the c-axis, which are lower than those parallel to the c-axis. The diffusion 
coefficients were also measured to be substantially higher at low partial pressures of oxygen. The 
diffusion coefficient of Mn in TiO2

 is quite high: 1.1*10-10 cm2/s at 900°C in air. As the diffusion 
distance is quite small as the nanowire diameter is ~100 nm, the nanowires readily become fully 
converted at high temperature.  

 
To observe the transient diffusion behavior the conversion process was investigated at lower 
temperatures. The expected distribution of Mn for the semi-infinite medium solution at T=600°C 
is shown in Figure S11, assuming a diffusion coefficient of 2.7*10-12 cm2/s for Mn diffusion 
orthogonal to the c-axis in an Ar environment. STEM elemental maps for incomplete conversion 
for different conversion times are shown in Figure S12. We see that at elevated temperatures the 
conversion is very rapid, and that the expected diffusion profiles are reproduced by the 
experimental data.  
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