Supplementary Information for

Three-dimensional Spirals of Atomic Layered MoS₂

Liming Zhang¹[†], Kaihui Liu^{2,3}[†], Andrew Barnabas Wong^{1,4}, Jonghwan Kim²,

Xiaoping Hong², Chong Liu^{1,4}, Ting Cao², Steven G Louie^{2,4}, Feng Wang^{2,4,5}* and

Peidong Yang^{1,4,5,6}*

- S1—CVD Synthesis of MoS₂ spiral
- S2—Structural characterization of spirals using X-ray diffraction (XRD)
- S3—Morphology characterization of one large spiral by atomic force microscopy (AFM)
- S4—Composition study of spiral by X-ray photoelectron spectroscopy (XPS)
- S5—Stability of different configurations in AA-stacked bilayer MoS2
- S6—Band structure of AA-stacked MoS2

S1: CVD Synthesis of MoS₂ spiral.

We grew MoS₂ spirals by CVD using MoO₃ and S as precursors. The substrate was loaded into the 1-inch CVD furnace and placed face-down above one crucible containing $5.0\sim7.5$ mg of MoO₃ (\geq 99.5%, sigma-Aldrich) with another crucible containing 140 mg of S (\geq 99.5%, sigma-Aldrich). In order to increase the possibility to get spirals, S was loaded in the high temperature region close to MoO₃. In contrast, for monolayer growth, the substrate was loaded above one crucible containing 20 mg of MoO₃ together with another crucible containing $6.5\sim7.0$ mg of S and the distance between S and MoO₃ is about 12 cm. MoS₂ spirals could be directly grown on diverse substrates (Fig. S1) and the optimized parameters have been summarized in Table 1.

Fig. S1 a-e, CVD synthesis of MoS_2 spiral on varied substrates (a) Si, (b) mica, (c) SiO₂, (d) TiO₂ and (e) fused silica.

Substrate	Source temperature (°C)	Mass ratio between MoO ₃ and S	Carrier gas flow rate (sccm)	Growth temperature (°C)	Growth time(min)	Pressure (Torr)	Domain size
$\begin{tabular}{ c c c c c }\hline Si \\ \hline Si NWs \\ \hline TiO_2 \\ \hline SiO_2 \\ \hline Fused \\ silica \\ \end{tabular}$	МоО ₃ : 650-700 S:600-650	MoO ₃ /S 5.0~7.5 mg/140 mg	ultrahigh- purity N ₂ 10-15 sccm	700	5-20	ambient pressure	300-350 nm
Mica	MoO ₃ : 600-650 S: 550-600			650			
Fused silica	MoO ₃ : 650-700 S : 450-500	MoO ₃ /S 20 mg/6.5-7.0 mg		700			>10 µm

Table S1 Detail synthesis parameters for MoS₂ spiral

S2: Structural characterization of spirals using XRD.

Fig. S2 XRD patterns of MoS_2 spirals. A pronounced diffraction peak locates at 14.4°, which corresponds to (002) crystal planes in Z direction. The wide peak signal between 20° and 30° originates from the fused silica substrate.

S3: Morphology characterization of one large MoS₂ spiral by AFM.

Fig. S3 a-c, Low- (a, height signal) and high- (b, height signal; c, phase signal) magnification AFM images of one large MoS_2 spiral with edge length ~20 μ m. The wrinkles formed in the center were attributed to the topological deformation resulted in the process of temperature decreasing.

S4: Composition study of spirals by XPS.

Fig. S4 a-b, High-resolution XPS spectra of Mo 3d, S 2s (a) and S 2p (b) peaks.

S5: Stability of different configurations in AA-stacked bilayer MoS₂.

Fig. S5 Configuration of highly symmetric structures of AA stacked bilayer MoS_2 . Local-density approximation (LDA) calculation shows that AA_1 is energetically stable, while AA_3 is unstable.

S6: LDA Band structure of AA-stacked MoS₂.

Fig. S6 a-b, LDA band structure of AA-stacked bilayer (a) and trilayer (b) MoS_2 . The transition I corresponds to the main PL peak around 1.8 eV in the PL spectra, while transition II (or II') corresponds to the indirect photoemission. A supercell arrangement was used in the calculation, with the vacuum thickness set at 10Å to avoid interactions between the MoS_2 bilayer/trilayer and its periodic images. We employ norm-conserving pseudo-potentials with a plane-wave energy cutoff of 140 Ry. The structures were fully relaxed until the force on each atom is smaller than 0.01 eV/Å. Spin-orbit coupling was not included in our calculations.