Supporting Information for:

Atomic Structure of Pt₃Ni Nanoframe Electrocatalysts by *in Situ* X-ray Absorption Spectroscopy

Nigel Becknell¹, Yijin Kang², Chen Chen^{1†}, Joaquin Resasco³, Nikolay Kornienko¹, Jinghua Guo⁴, Nenad M. Markovic², Gabor A. Somorjai^{1,5}, Vojislav R. Stamenkovic², Peidong Yang^{1,5,6,*}

- 1 Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- 2 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- 3 Department of Chemical Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- 4 The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- 5 Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- 6 Kavli Energy Nanoscience Institute, Berkeley, California 94720, United States

[†] Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

^{*}Correspondence to: p_yang@berkeley.edu

Figure S1. Front and side views of *in situ* electrochemical XAS cell. The bottom has a port for a Ag/AgCl reference electrode and the top has a port for a Pt wire counter electrode. Gas or liquid flow can be carried out through the side ports.

Figure S2. TEM images of (a) $Pt_3Ni(1.0)$ and (b) $Pt_3Ni(1.5)$. Scale bars = 25 nm.

Figure S3. X-ray diffraction patterns of $Pt_3Ni(1.0)$ and $Pt_3Ni(1.5)$ as-prepared after annealing on carbon support.

Figure S4. EXAFS fitting of first coordination shell for Ni K-edge and Pt L_3 -edge data of the as-prepared nanoframe catalyst (after annealing and before electrochemistry). For Ni K-edge EXAFS, $\Delta k = 2-13 \text{ Å}^{-1}$ and $\Delta R = 1.2-3 \text{ Å}$. For Pt L_3 -edge EXAFS, $\Delta k = 2-14 \text{ Å}^{-1}$ and $\Delta R = 1.8-3.1 \text{ Å}$.

Table S1. Fitting parameters from EXAFS fitting of as-prepared nanoframe catalysts

	N _{PtNi}	N _{NiPt}	N _{PtPt}	N _{NiNi}	N _{Pt}	N _{Ni}	$\mathbf{R}_{ ext{PtNi}}$	R _{PtPt}	R _{NiNi}	N _{NiO}	R_{NiO}
Pt ₃ Ni(1.0)	4.4	7.9	4.7	0.7	9.1	8.6	2.661	2.710	2.637	4.8	2.050
	(1.7)	(1.5)	(1.5)	(0.4)	(3.2)	(1.9)	(0.023)	(0.010)	(0.015)	(0.5)	(0.008)
Pt ₃ Ni(1.5)	3.1	7.9	5.0	1.0	8.1	8.9	2.664	2.720	2.646	3.4	2.051
	(1.3)	(1.4)	(1.3)	(0.6)	(2.6)	(2.0)	(0.019)	(0.010)	(0.015)	(0.5)	(0.010)

Figure S5. EXAFS fitting of first coordination shell for Ni *K*-edge and Pt L_3 -edge data of the nanoframe catalyst after electrochemistry (rinsed with DI water and dried under N₂). For Ni *K*-edge EXAFS, $\Delta k = 2-12 \text{ Å}^{-1}$ and $\Delta R = 1.5-3.1 \text{ Å}$. For Pt L_3 -edge EXAFS, $\Delta k = 2-13.5 \text{ Å}^{-1}$ and $\Delta R = 1.8-3.1 \text{ Å}$.

Table S2. Fitting parameters from EXAFS fitting of nanoframe catalyst after electrochemistry

	N_{PtNi}	N _{NiPt}	N _{PtPt}	N_{NiNi}	N_{Pt}	N_{Ni}	$\mathbf{R}_{\mathrm{PtNi}}$	R_{PtPt}	$\mathbf{R}_{ ext{NiNi}}$	$J_{Pt}(\%)$	$J_{Ni}(\%)$
Pt ₃ Ni(1.0)	2.1 (0.7)	5.7 (1.0)	5.6 (1.0)	4.1 (1.0)	7.7 (1.7)	9.8 (2.0)	2.660 (0.008)	2.715 (0.008)	2.651 (0.009)	109	77
Pt ₃ Ni(1.5)	1.6 (0.7)	5.5 (1.3)	6.3 (1.2)	4.4 (1.2)	7.9 (1.9)	9.9 (2.5)	2.671 (0.007)	2.725 (0.010)	2.659 (0.010)	79	74

Figure S6. Raw k^3 -weighted $\chi(k)$ EXAFS spectra for Pt L₃-edge of Pt₃Ni(1.0) in three conditions; before, during, and after the oxygen reduction reaction.

Figure S7. Raw k^3 -weighted $\chi(k)$ EXAFS spectra for Pt L₃-edge of Pt₃Ni(1.5) in three conditions; before, during, and after the oxygen reduction reaction.