The ultimate goal of catalysis research is to achieve 100% selectivity for the desired products at maximum turnover rate (activity) without generating undesired byproducts. Methods for optimizing activity and selectivity have been investigated on the atomic and nanoscopic levels using shape, size, and composition control in nanocrystal synthesis. Incorporating two or more elements in a given material can provide multifunctional surface sites or materials properties not possible with a single element. Compositional gradients and specific elemental positioning can further tune the surface properties, as can shape and size control to expose desired surface facets. On a macroscopic level, nanocrystals are precisely arranged on supporting substrates to achieve desired functionality. One-dimensional supports can provide directionality for catalyst deposition. Two-dimensional supports can provide a platform for highly oriented arrays of nanoparticles, while three-dimensional supports provide the capability to obtain extremely high loading density and activity. Atomically-sensitive characterization techniques both ex situ and in situ allow the underlying mechanisms of selectivity and activity enhancement to be elucidated for a given nanocrystal design.
CO2 recycling powered by renewable energy represents an attractive approach to limiting harmful carbon emissions while simultaneously enabling the synthesis of useful chemicals and fuels. It ultimately enables the storage of renewable electricity in chemical form. To advance this technology toward practical deployment, fundamental and applied research is needed to perfect catalysts that implement the electrochemical conversion of CO2. Catalysts will be required to produce valuable reduced-carbon products with vastly improved selectivity, function with order-of-magnitude higher current densities, and demonstrate stable operation. The group is actively working on catalysts that would enable a carbon-neutral, renewable-powered future.
Research Milestones
- 2007 – “Shaping binary metal nanocrystals through epitaxial seeded growth”, S. Habas, H. Lee, V. Radmilovic, G. Somorjai, P. Yang, Nature Mater.
- 2009 – “Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles”, S. Joo, J. Park, C. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nature Mater.
- 2011 – “Nanocrystal Bilayer for Tandem Catalysis”, Y. Yamada, C. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, G. A. Somorjai, P. Yang, Nature Chem.
- 2014 – “Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces”, C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science.
- 2014 – “Synergistic Geometric and Electronic Effects for Electrochemical Reduction of Carbon Dioxide Using Gold–copper Bimetallic Nanoparticles”, D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Nature Comm.
- 2016 – “Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts”, Zhiqiang Niu, Nigel Becknell, Yi Yu, Dohyung Kim, Chen Chen, Nikolay Kornienko, Gabor A Somorjai, Peidong Yang, Nature Mater.
- 2017 – “Room-Temperature Dynamics of Vanishing Copper Nanoparticles Supported on Silica”, Dohyung Kim, Nigel Becknell, Yi Yu, Peidong Yang, Nano Letters.
- 2017 – “Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin five-fold twinned copper nanowires”, Yifan Li, Fan Cui, Michael B. Ross, Dohyung Kim, Yuchun Sun, Peidong Yang, Nano Letters.
- 2017 – “Electrochemical Activation of CO2 through Atomic Ordering Transformations of AuCu Nanoparticles”, Dohyung Kim, Chenlu Xie, Nigel Becknell, Yi Yu, Mohammadreza Karamad, Karen Chan, Ethan Crumlin, Jens Norskov, Peidong Yang, J. Am. Chem. Soc.
- 2017 – “Tandem catalysis for CO2 hydrogenation to C2-C4 hydrocarbons”, Chenlu Xie, Chen Chen, Yi Yu, Ji Su, Yifan Li, Gabor Somorjai, Peidong Yang, Nano Lett.
- 2017 – “Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO2”, Michael B Ross, Cao Thang Dinh, Yifan Li, Dohyung Kim, Phil De Luna, Edward H Sargent, Peidong Yang, J. Am. Chem. Soc.
- 2017 – “Control of Architecture in Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts”, Nigel Becknell, Yoonkook Son, Dohyung Kim, Dongguo Li, Yi Yu, Zhiqiang Niu, Teng Lei, Brian Sneed, Karren More, Nenad Markovic, Vojislav Stamenkovic, Peidong Yang, J. Am. Chem. Soc.
- 2017 – “Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products”, Dohyung Kim, Christopher S. Kley, Yifan Li, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2019 – “Electrocatalytic Rate Alignment Enhances Syngas Generation”, Michael B. Ross, Yifan Li, Phil De Luna, Dohyung Kim, Edward H. Sargent, Peidong Yang, Joule.
- 2019 – “Designing Materials for Electrochemical Carbon Dioxide Recycling”, Michael Ross, Phil De Luna, Yifan Li, Cao-Thang Dinh, Dohyung Kim, Peidong Yang, Edward Sargent, Nature Catalysis.
- 2019 – “Co-feeding copper catalysts couple carbon”, Yifan Li, Peidong Yang, Nature Nanotechnology.
- 2020 – “Surface and Interface Control in Nanoparticle Catalysis”, Chenlu Xie, Zhiqiang Niu, Dohyung Kim, Mufan Li, Peidong Yang, Chem. Rev.
- 2020 – “Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons”, Yifan Li, Dohyung Kim, Sheena Louisia, Chenlu Xie, Qiao Kong, Sunmoon Yu, Tom Lin, Shaul Aloni, Sirine C. Fakra, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2020 – “Cu-Ag tandem catalysts for high-rate CO2 electrolysis towards multicarbons”, Chubai Chen, Yifan Li, Sunmoon Yu, Sheena Louisia, Jianbo Jin, Mufan Li, Michael B. Ross, Peidong Yang, Joule.
- 2020 – “Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer”, Dohyung Kim, Sunmoon Yu, Fan Zheng, Inwhan Roh, Yifan Li, Sheena Louisia, Zhiyuan Qi, Gabor A. Somorjai, Heinz Frei, Lin-Wang Wang, Peidong Yang, Nature Energy.
- 2021 – “Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO2 Conversion”, Sunmoon Yu, Dohyung Kim, Zhiyuan Qi, Sheena Louisia, Yifan Li, Gabor A. Somorjai, Peidong Yang, J. Am. Chem. Soc.
- 2022 – “The Presence and Role of the Intermediary CO Reservoir in Heterogeneous Electroreduction of CO2“, Sheena Louisia, Dohyung Kim, Yifan Li, Mengyu Gao, Sunmoon Yu, Inwhan Roh, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2022 – “The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO2 Conversion”, Sunmoon Yu, Sheena Louisia, Peidong Yang, J. Am. Chem. Soc. Au.
Explore other research projects:
- Nanowire-Cell Interface
- Nanowire Photonics
- Nanowire-based Solar Cells
- Nanowire Thermoelectrics
- Nanotube Nanofluidics
- Plasmonics