The term ‘nanowire’ is generally used to describe a large aspect ratio nanostructure with a diameter between 1-100 nm. Both descriptors are pertinent to the physical and technological significance of nanowires. Firstly, the diameter puts the radial dimension of these structures at or below the characteristic length scale of various interesting and fundamental solid-state phenomena: the exciton Bohr radius, wavelength of light, phonon mean free path, critical size of magnetic domains, exciton diffusion length, and others. As a result, many physical properties of semiconductors are significantly altered within the confines of the nanowire surfaces. In addition, their large surface-to-volume ratio allows for distinct structural and chemical behavior, as well as greater chemical reactivity. This two-dimensional confinement endows nanowires with unique properties that stray from those of their corresponding bulk material. Secondly, the large aspect ratio of nanowires imitates their technological application. The one unconstrained dimension can direct the conduction of quantum particles such as electrons, phonons, and photons. As a result, nanowires provide a convenient platform through which researchers may study confined transport phenomena. This control over various forms of energy transport makes nanowires ideal materials for advanced solid-state devices, especially when combined with the fact that nanowire lengths are normally sufficient to interface with top-down fabrication processes such as photolithography.
For decades, nanowire research has exclusively focused on traditional covalent solids including group-IV, III-V, and II-VI materials featuring four-fold coordination and covalent sp3 bonding. The recent renaissance of halide perovskites has raised the prospects of semiconductor materials with ionic bonding, featuring more complex crystal structures and unique properties of interest for future energy conversion and microelectronics applications. These ionic crystals are distinguished by lower cohesive energies compared with traditional covalent semiconductors (2-3 eV per atom for typical ionic crystals and halide perovskites, but > 4 eV per atom for covalent semiconductors such as Si). Because of this low cohesive energy, the chemical bonds within these new semiconductors can be readily reconfigured (i.e., bond breaking and formation with low energy input). The materials consequently are responsive towards environmental stimuli, such as temperature, strain, chemical environment, laser irradiation, and electric field. Balancing ionic and covalent bonding in complex nanostructure motifs creates new opportunities to advance the science of semiconductor nanowires with properties and processing pathways unattainable in conventional covalent solids.
Research Milestones
- 2015 – First atomically thin 2D perovskite: “Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites”, L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L. Wang, A. P. Alivisatos, P. Yang, Science.
- 2015 – First CsPbX3 nanowires by colloidal synthesis: “Solution-phase Synthesis of Cesium Lead Halide Perovskite Nanowires”, Dandan Zhang, Samuel W Eaton, Yi Yu, Letian Dou, Peidong Yang, J. Am. Chem. Soc.
- 2015 – First perovskite nanorod vertical array: “Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes”, Andrew Barnabas Wong, Minliang Lai, Samuel Wilson Eaton, Yi Yu, Elbert Lin, Letian Dou, Anthony Fu, Peidong Yang, Nano Letters.
- 2016 – Atomic resolution TEM imaging of 2D perovskite: “Atomic Resolution Imaging of Halide Perovskites”, Yi Yu, Dandan Zhang, Christian Kisielowski, Letian Dou, Nikolay Kornienko, Yehonadav Bekenstein, Andrew B Wong, A Paul Alivisatos, Peidong Yang, Nano Letters.
- 2016 – Ultrathin CsPbBr3 nanowires: “Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires”, Dandan Zhang, Yi Yu, Yehonadav Bekenstein, Andrew B Wong, A Paul Alivisatos, Peidong Yang. J. Am. Chem. Soc.
- 2016 – First CsPbX3 nanowire laser: “Lasing in Robust Cesium Lead Halide Perovskite Nanowires”, Samuel W Eaton, Minliang Lai, Natalie A Gibson, Andrew B Wong, Letian Dou, Jie Ma, Lin-Wang Wang, Stephen R Leone, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2017 – CsPbI3 nanowire phase transition: “Structural, optical, and electrical study of phase controlled cesium lead iodide nanowires”, Minliang Lai, Qiao Kong, Connor G. Bischak, Yi Yu, Letian Dou, Sam Eaton, Naomi S. Ginsberg, Peidong Yang, Nano Research.
- 2017 – “Spatially Resolved Multi-Color CsPbX3 Nanowire Heterojunctions via Anion Exchange”, Letian Dou, Minliang Lai, Christopher S. Kley, Yiming Yang, Connor G. Bischak, Dandan Zhang, Samuel W. Eaton, Naomi S. Ginsberg, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2017 – “Ultralow thermal conductivity in all-inorganic halide perovskites”, Woochul Lee, Huashan Li, Andrew B. Wong, Dandan Zhang, Minliang Lai, Yi Yu, Qiao Kong, Elbert Lin, Jeffrey J. Urban, Jeffrey C. Grossman, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2017 – “Bandgap engineering in semiconductor alloy nanomaterials with widely tunable bandgaps and compositions”, Cun-Zheng Ning, Letian Dou, Peidong Yang, Nature Reviews Materials.
- 2018 – “Thermochromic Halide Perovskite Solar Cells”, Jia Lin, Minliang Lai, Letian Dou, Christopher S. Kley, Hong Chen, Fei Peng, Junliang Sun, Dylan Lu, Steven A. Hawks, Chenlu Xie, Fan Cui, A. Paul Alivisatos, David T. Limmer, Peidong Yang, Nature Mater.
- 2018 – “Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires”, Teng Lei, Minliang Lai, Qiao Kong, Dylan Lu, Woochul Lee, Letian Dou, Vincen Wu, Yi Yu, Peidong Yang, Nano Lett.
- 2018 – “Phase transition induced p-n junction in single halide perovskite nanowire”, Qiao Kong, Woochul Lee, Minliang Lai, Connor G. Bischak, Guoping Gao, Andrew B. Wong, Teng Lei, Yi Yu, Lin-Wang Wang, Naomi S. Ginsberg, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2018 – “Intrinsic Anion Diffusivity in Lead Halide Perovskites is Facilitated by a Soft Lattice”, Minliang Lai, Amael Obliger, Dylan Lu, Christopher S. Kley, Connor G. Bischak, Qiao Kong, Teng Lei, Letian Dou, Naomi S. Ginsberg, David T. Limmer, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2018 – “Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation”, Dylan Lu, Ye Zhang, Minliang Lai, Alex Lee, Chenlu Xie, Jia Lin, Teng Lei, Zhenni Lin, Christopher S. Kley, Jianmei Huang, Eran Rabani, Peidong Yang, Nano Lett.
- 2019 – “Quantitative imaging of anion exchange kinetics in halide perovskites”, Ye Zhang, Dylan Lu, Mengyu Gao, Minliang Lai, Jia Lin, Teng Lei, Zhenni Lin, Li Na Quan, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2019 – “Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters”, Jia Lin, Hong Chen, Jun Kang, Li Na Quan, Zhenni Lin, Qiao Kong, Minliang Lai, Sunmoon Yu, Lei Wang, Lin-wang Wang, Michael F. Toney, Peidong Yang, Matter.
- 2019 – “Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden–Popper Perovskite Phase”, Yong Liu, Martin Siron, Dylan Lu, Jingjing Yang, Roberto dos Reis, Fan Cui, Mengyu Gao, Minliang Lai, Jia Lin, Qiao Kong, Teng Lei, Joohoon Kang, Jianbo Jin, Jim Ciston, Peidong Yang, J. Am. Chem. Soc.
- 2019 – “Pressure Induced Semiconductor to Metal Phase Transition of a Charge-Ordered Indium Halide Perovskite”, Jia Lin, Hong Chen, Yang Gao, Yao Cai, Jianbo Jin, Ahmed S. Etman, Joohoon Kang, Teng Lei, Zhenni Lin, Maria C. Folgueras, Li Na Quan, Qiao Kong, Matthew Sherburne, Mark Asta, Junliang Sun, Michael F. Toney, Junqiao Wu, Peidong Yang. Proc. Natl. Acad. Sci. U.S.A.
- 2020 – “Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes”, Hong Chen, Jia Lin, Joohoon Kang, Qiao Kong, Dylan Lu, Jun Kang, Minliang Lai, Li Na Quan, Zhenni Lin, Jianbo Jin, Lin-wang Wang, Michael F. Toney, Peidong Yang, Science Advances.
- 2020 – “Two-Dimensional Halide Perovskite Lateral Epitaxial Heterostructures”, Enzheng Shi, Biao Yuan, Stephen B. Shiring, Yao Gao, Akriti, Yunfan Guo, Cong Su, Minliang Lai, Peidong Yang, Jing Kong, Brett M. Savoie, Yi Yu, Letian Dou. Nature.
- 2020 – “Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures”, Mengyu Gao, Hao Liu, Sunmoon Yu, Sheena Louisia, Ye Zhang, David P. Nenon, A. Paul Alivisatos, Peidong Yang, J. Am. Chem. Soc.
- 2020 – “Lead-free Cesium Europium Halide Perovskite Nanocrystals”, Jianmei Huang, Teng Lei, Martin Siron, Ye Zhang, Sunmoon Yu, Fabian Seeler, Ahmad Dehestani, Li Na Quan, Kerstin Schierle-Arndt, Peidong Yang. Nano Letters.
- 2020 – “Liquid-like Interfaces Mediate Structural Phase Transitions in Lead Halide Perovskites”, Connor G. Bischak, Minliang Lai, Zhaochuan Fan, Dylan Lu, Philippe David, Dengpan Dong, Hong Chen, Ahmed S. Etman, Teng Lei, Junliang Sun, Michael Grünwald, David T. Limmer, Peidong Yang, Naomi S. Ginsberg, Matter.
- 2020 – “Solid-state ionic rectification in perovskite nanowire heterostructures”, Qiao Kong, Amael Obliger, Minliang Lai, Mengyu Gao, David Limmer, Peidong Yang, Nano Letters.
- 2020 – “Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites”, Julian A. Steele, Minliang Lai, Ye Zhang, Zhenni Lin, Johan Hofkens, Maarten B. J. Roeffaers, Peidong Yang, Acc. Mater. Res.
- 2021 – “Vibrational relaxation dynamics in layered perovskite quantum wells”, Li Na Quan, Yoonjae Park, Peijun Guo, Mengyu Gao, Jianbo Jin, Jianmei Huang, Jason K. Copper, Adam Schwartzberg, Richard Schaller, David T. Limmer, Peidong Yang, Proc. Natl. Acad. Sci. U.S.A.
- 2022 – “Ferroelectricity in a Semiconducting All-inorganic Halide Perovskite”, Ye Zhang, Eric Parsonnet, Abel Fernandez, Sinéad M. Griffin, Huaixun Huyan, Chung-Kuan Lin, Teng Lei, Jianbo Jin, Edward S. Barnard, Archana Raja, Piush Behera, Xiaoqing Pan, Ramamoorthy Ramesh, Peidong Yang, Sci. Adv.
- 2022 – “Controlling Phase Transition in CsPbI3 Nanowires”, Chung-Kuan Lin, Ye Zhang, Mengyu Gao, Jia-An Lin, Han Le, Zhenni Lin, Peidong Yang, Nano Lett.
Explore other research projects:
-
Electrocatalysis
- Nanowire-Cell Interface
- Nanowire Photonics
- Nanowire-based Solar Cells
- Nanowire Thermoelectrics
- Nanotube Nanofluidics
- Plasmonics